第二课 词向量 褚则伟 zeweichu@gmail.com
第二课学习目标
学习词向量的概念
用Skip-thought模型训练词向量
学习使用PyTorch dataset和dataloader
学习定义PyTorch模型
学习torch.nn中常见的Module
学习常见的PyTorch operations
保存和读取PyTorch模型
第二课使用的训练数据可以从以下链接下载到。
链接:https://pan.baidu.com/s/1tFeK3mXuVXEy3EMarfeWvg 密码:v2z5
在这一份notebook中,我们会(尽可能)尝试复现论文Distributed Representations of Words and Phrases and their Compositionality 中训练词向量的方法. 我们会实现Skip-gram模型,并且使用论文中noice contrastive sampling的目标函数。
这篇论文有很多模型实现的细节,这些细节对于词向量的好坏至关重要。我们虽然无法完全复现论文中的实验结果,主要是由于计算资源等各种细节原因,但是我们还是可以大致展示如何训练词向量。
以下是一些我们没有实现的细节
subsampling:参考论文section 2.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 import torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.utils.data as tudfrom torch.nn.parameter import Parameterfrom collections import Counterimport numpy as npimport randomimport mathimport pandas as pdimport scipyimport sklearnfrom sklearn.metrics.pairwise import cosine_similarity
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 USE_CUDA = torch.cuda.is_available() random.seed(53113 ) np.random.seed(53113 ) torch.manual_seed(53113 ) if USE_CUDA: torch.cuda.manual_seed(53113 ) K = 100 C = 3 NUM_EPOCHS = 2 MAX_VOCAB_SIZE = 30000 BATCH_SIZE = 128 LEARNING_RATE = 0.2 EMBEDDING_SIZE = 100 LOG_FILE = "word-embedding.log" def word_tokenize (text) : return text.split()
从文本文件中读取所有的文字,通过这些文本创建一个vocabulary
由于单词数量可能太大,我们只选取最常见的MAX_VOCAB_SIZE个单词
我们添加一个UNK单词表示所有不常见的单词
我们需要记录单词到index的mapping,以及index到单词的mapping,单词的count,单词的(normalized) frequency,以及单词总数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 with open("./lesson2/text8.train.txt" , "r" ) as fin: text = fin.read() text = [w for w in word_tokenize(text.lower())] vocab = dict(Counter(text).most_common(MAX_VOCAB_SIZE-1 )) vocab["<unk>" ] = len(text) - np.sum(list(vocab.values())) idx_to_word = [word for word in vocab.keys()] word_to_idx = {word:i for i, word in enumerate(idx_to_word)} word_counts = np.array([count for count in vocab.values()], dtype=np.float32) word_freqs = word_counts / np.sum(word_counts) word_freqs = word_freqs ** (3. /4. ) word_freqs = word_freqs / np.sum(word_freqs) VOCAB_SIZE = len(idx_to_word) VOCAB_SIZE
30000
实现Dataloader 一个dataloader需要以下内容:
把所有text编码成数字,然后用subsampling预处理这些文字。
保存vocabulary,单词count,normalized word frequency
每个iteration sample一个中心词
根据当前的中心词返回context单词
根据中心词sample一些negative单词
返回单词的counts
这里有一个好的tutorial介绍如何使用PyTorch dataloader . 为了使用dataloader,我们需要定义以下两个function:
__len__
function需要返回整个数据集中有多少个item
__get__
根据给定的index返回一个item
有了dataloader之后,我们可以轻松随机打乱整个数据集,拿到一个batch的数据等等。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 class WordEmbeddingDataset (tud.Dataset) : def __init__ (self, text, word_to_idx, idx_to_word, word_freqs, word_counts) : ''' text: a list of words, all text from the training dataset word_to_idx: the dictionary from word to idx idx_to_word: idx to word mapping word_freq: the frequency of each word word_counts: the word counts ''' super(WordEmbeddingDataset, self).__init__() self.text_encoded = [word_to_idx.get(t, VOCAB_SIZE-1 ) for t in text] self.text_encoded = torch.Tensor(self.text_encoded).long() self.word_to_idx = word_to_idx self.idx_to_word = idx_to_word self.word_freqs = torch.Tensor(word_freqs) self.word_counts = torch.Tensor(word_counts) def __len__ (self) : ''' 返回整个数据集(所有单词)的长度 ''' return len(self.text_encoded) def __getitem__ (self, idx) : ''' 这个function返回以下数据用于训练 - 中心词 - 这个单词附近的(positive)单词 - 随机采样的K个单词作为negative sample ''' center_word = self.text_encoded[idx] pos_indices = list(range(idx-C, idx)) + list(range(idx+1 , idx+C+1 )) pos_indices = [i%len(self.text_encoded) for i in pos_indices] pos_words = self.text_encoded[pos_indices] neg_words = torch.multinomial(self.word_freqs, K * pos_words.shape[0 ], True ) return center_word, pos_words, neg_words
创建dataset和dataloader
1 2 dataset = WordEmbeddingDataset(text, word_to_idx, idx_to_word, word_freqs, word_counts) dataloader = tud.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True , num_workers=0 )
[tensor([ 48, 1495, 1799, 2312, 2329, 4869, 8, 0, 8746, 71,
772, 7, 2837, 0, 11805, 1746, 7122, 6, 10, 1956,
9429, 33, 17, 230, 29999, 5, 291, 640, 13454, 103,
2505, 540, 1683, 25, 330, 52, 1890, 644, 219, 6,
29999, 82, 27040, 2008, 1, 1832, 5685, 0, 53, 1214,
58, 29999, 7677, 9, 14, 5, 7035, 12651, 73, 788,
1159, 7, 0, 40, 3, 29999, 53, 57, 714, 5871,
1056, 2756, 5, 5272, 26, 29999, 44, 8, 35, 6009,
41, 5, 692, 17, 854, 2473, 4, 33, 1, 12482,
48, 7, 30, 306, 7595, 6, 5, 56, 1461, 2,
131, 167, 232, 11, 9131, 18990, 4, 4395, 32, 19,
0, 847, 17, 6116, 608, 2573, 6378, 29999, 52, 17768,
20, 0, 4113, 8883, 2380, 121, 1298, 87]),
tensor([[ 480, 0, 868, 363, 13, 93],
[ 5889, 10403, 3751, 5168, 932, 16947],
[ 749, 3, 5, 345, 1, 0],
[ 3798, 8075, 2, 1008, 2, 50],
[ 5607, 19200, 3981, 1436, 582, 4],
[ 2300, 4, 5, 213, 27, 1122],
[ 14, 1761, 3, 22, 8, 2573],
[ 8123, 2813, 19, 9093, 2077, 96],
[ 13, 44, 2189, 5529, 26, 17],
[ 2949, 0, 2266, 4809, 2876, 169],
[ 2084, 4219, 1173, 1262, 29999, 772],
[ 3284, 9, 7, 7, 599, 486],
[29999, 5, 2252, 14789, 0, 7853],
[ 83, 70, 38, 4720, 1, 6251],
[ 0, 4719, 2, 39, 2117, 6],
[ 13, 254, 387, 23, 0, 121],
[ 266, 54, 11, 6962, 4473, 2],
[ 569, 10, 7479, 5115, 17946, 27],
[ 8, 32, 557, 657, 5, 297],
[10982, 216, 6, 1051, 4695, 130],
[ 6260, 1463, 6, 0, 11117, 1174],
[ 8131, 16819, 1, 0, 29999, 695],
[ 11, 5, 9742, 4, 0, 490],
[ 14, 227, 6220, 5, 2, 2834],
[ 8529, 1, 0, 212, 0, 314],
[ 20, 33, 6362, 5836, 4, 94],
[ 32, 10, 1305, 174, 0, 29999],
[ 38, 724, 19, 4, 0, 770],
[ 9207, 5098, 2, 1, 1360, 105],
[ 14, 0, 29999, 7322, 6, 19459],
[ 974, 4, 864, 2, 0, 113],
[ 55, 5216, 2214, 1314, 80, 2],
[ 2, 26169, 1027, 2814, 24, 977],
[ 667, 1, 17338, 1043, 27, 0],
[ 18, 1574, 3048, 184, 66, 617],
[ 27, 280, 577, 1202, 0, 19816],
[ 5, 5331, 6, 26, 275, 23],
[ 2638, 0, 219, 67, 37, 988],
[ 44, 890, 18, 32, 776, 27004],
[ 4, 0, 15733, 1790, 5, 953],
[ 6, 6495, 0, 1162, 2, 1316],
[ 3, 15, 346, 4, 0, 3131],
[ 11, 45, 136, 27, 135, 42],
[ 5191, 24, 5, 14534, 481, 29282],
[ 10, 0, 181, 973, 19, 25],
[ 144, 1288, 3860, 30, 3778, 1],
[ 973, 10080, 1355, 25, 13110, 27],
[ 5, 62, 23, 358, 5077, 10844],
[ 1778, 35, 48, 223, 1459, 13],
[ 0, 477, 158, 5005, 19, 0],
[ 4364, 2567, 91, 25, 280, 2567],
[29999, 24131, 300, 29999, 21067, 173],
[ 12, 29999, 29999, 29999, 29999, 14],
[ 145, 2, 29, 2020, 145, 2680],
[ 4764, 2094, 12947, 3593, 2, 0],
[ 13, 168, 10474, 29999, 10, 5],
[ 1011, 4210, 29999, 29999, 3, 3],
[ 9, 9, 2471, 3, 22, 227],
[ 227, 5, 5760, 227, 5, 227],
[ 26, 51, 154, 5, 3, 346],
[ 653, 0, 439, 2, 324, 44],
[ 2179, 13, 20, 1, 1598, 2],
[29999, 960, 1, 1098, 260, 11907],
[ 396, 29999, 26, 53, 1667, 19],
[ 3245, 1027, 4, 8, 21, 22],
[ 2, 4557, 1, 222, 445, 8796],
[ 3672, 19, 48, 292, 309, 70],
[ 918, 27, 0, 1384, 6, 4626],
[ 76, 59, 0, 1986, 34, 43],
[ 8, 12, 2702, 25944, 126, 2825],
[ 19, 132, 686, 1403, 1, 0],
[ 1390, 348, 6753, 0, 14359, 12643],
[ 1, 356, 10, 951, 13, 5075],
[12655, 8176, 29999, 5, 18003, 125],
[ 3232, 1, 258, 10, 106, 1348],
[ 12, 29999, 1769, 74, 29999, 164],
[ 185, 1282, 624, 2038, 9707, 26],
[ 3149, 73, 3, 7, 9, 3],
[ 6, 5528, 187, 48, 197, 0],
[ 597, 1, 5820, 14, 0, 898],
[ 32, 479, 259, 2685, 310, 385],
[ 2542, 58, 10, 717, 4, 3663],
[ 1, 65, 9, 2206, 6, 38],
[ 4089, 3286, 1475, 3, 1, 0],
[ 0, 838, 551, 136, 175, 0],
[ 267, 78, 0, 67, 29999, 20],
[ 7, 7, 29944, 0, 3, 8],
[ 1883, 141, 24, 6, 6214, 1367],
[ 107, 5667, 89, 0, 1408, 35],
[ 156, 75, 32, 0, 774, 6],
[ 19, 35, 385, 643, 2, 19],
[ 4823, 10775, 15, 1937, 2, 4839],
[ 24, 29999, 23, 362, 3762, 176],
[ 2409, 268, 5, 3131, 209, 79],
[ 9573, 1, 436, 18136, 7979, 5383],
[ 272, 242, 579, 11, 272, 3],
[ 11, 120, 1, 461, 25, 36],
[ 17, 74, 3, 28426, 13, 102],
[ 4, 0, 10960, 1, 25912, 1561],
[ 924, 3397, 1889, 1141, 843, 23654],
[ 1950, 6, 0, 3384, 7379, 19],
[ 13, 0, 5386, 36, 1642, 275],
[11913, 612, 768, 6, 44, 8895],
[ 51, 31, 3135, 1982, 19, 0],
[ 0, 2635, 27, 308, 48, 1335],
[ 343, 8573, 28, 32, 4394, 25742],
[ 125, 489, 767, 14, 98, 5],
[ 451, 1699, 21841, 29999, 56, 327],
[ 4, 3932, 1230, 11823, 3, 1],
[ 714, 5428, 2211, 0, 411, 1],
[19968, 2, 18, 8396, 2094, 6346],
[ 222, 1333, 2301, 300, 2381, 2],
[ 305, 93, 1993, 5967, 63, 29999],
[ 916, 50, 1921, 25, 1277, 1539],
[ 312, 14, 413, 10, 147, 6320],
[ 7, 7, 15, 879, 9, 7],
[ 0, 200, 29999, 1, 50, 0],
[ 1, 22168, 4, 1523, 6396, 995],
[22526, 47, 81, 1, 1632, 10],
[ 2135, 10, 2059, 516, 89, 5],
[ 2079, 909, 10, 7, 7, 2588],
[ 6259, 7404, 10, 297, 2703, 628],
[ 5, 29999, 244, 2653, 13, 29],
[ 1532, 23, 0, 7033, 76, 1174],
[ 26, 263, 36, 29999, 27, 0],
[ 674, 105, 0, 1, 0, 27222],
[ 51, 76, 31, 335, 2, 29999],
[12187, 1, 0, 347, 8817, 29999]]),
tensor([[ 6313, 23579, 1926, ..., 64, 147, 1924],
[12277, 523, 231, ..., 19350, 17264, 8771],
[ 577, 27195, 11445, ..., 27978, 19518, 59],
...,
[ 246, 7365, 280, ..., 3584, 56, 3854],
[ 8, 24712, 125, ..., 26156, 18621, 295],
[25034, 5372, 5070, ..., 965, 1358, 25900]])]
定义PyTorch模型 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 class EmbeddingModel (nn.Module) : def __init__ (self, vocab_size, embed_size) : ''' 初始化输出和输出embedding ''' super(EmbeddingModel, self).__init__() self.vocab_size = vocab_size self.embed_size = embed_size initrange = 0.5 / self.embed_size self.out_embed = nn.Embedding(self.vocab_size, self.embed_size, sparse=False ) self.out_embed.weight.data.uniform_(-initrange, initrange) self.in_embed = nn.Embedding(self.vocab_size, self.embed_size, sparse=False ) self.in_embed.weight.data.uniform_(-initrange, initrange) def forward (self, input_labels, pos_labels, neg_labels) : ''' input_labels: 中心词, [batch_size] pos_labels: 中心词周围 context window 出现过的单词 [batch_size * (window_size * 2)] neg_labelss: 中心词周围没有出现过的单词,从 negative sampling 得到 [batch_size, (window_size * 2 * K)] return: loss, [batch_size] ''' batch_size = input_labels.size(0 ) input_embedding = self.in_embed(input_labels) pos_embedding = self.out_embed(pos_labels) neg_embedding = self.out_embed(neg_labels) log_pos = torch.bmm(pos_embedding, input_embedding.unsqueeze(2 )).squeeze() log_neg = torch.bmm(neg_embedding, -input_embedding.unsqueeze(2 )).squeeze() log_pos = F.logsigmoid(log_pos).sum(1 ) log_neg = F.logsigmoid(log_neg).sum(1 ) loss = log_pos + log_neg return -loss def input_embeddings (self) : return self.in_embed.weight.data.cpu().numpy()
定义一个模型以及把模型移动到GPU
1 2 3 model = EmbeddingModel(VOCAB_SIZE, EMBEDDING_SIZE) if USE_CUDA: model = model.cuda()
下面是评估模型的代码,以及训练模型的代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 def evaluate (filename, embedding_weights) : if filename.endswith(".csv" ): data = pd.read_csv(filename, sep="," ) else : data = pd.read_csv(filename, sep="\t" ) human_similarity = [] model_similarity = [] for i in data.iloc[:, 0 :2 ].index: word1, word2 = data.iloc[i, 0 ], data.iloc[i, 1 ] if word1 not in word_to_idx or word2 not in word_to_idx: continue else : word1_idx, word2_idx = word_to_idx[word1], word_to_idx[word2] word1_embed, word2_embed = embedding_weights[[word1_idx]], embedding_weights[[word2_idx]] model_similarity.append(float(sklearn.metrics.pairwise.cosine_similarity(word1_embed, word2_embed))) human_similarity.append(float(data.iloc[i, 2 ])) return scipy.stats.spearmanr(human_similarity, model_similarity) def find_nearest (word) : index = word_to_idx[word] embedding = embedding_weights[index] cos_dis = np.array([scipy.spatial.distance.cosine(e, embedding) for e in embedding_weights]) return [idx_to_word[i] for i in cos_dis.argsort()[:10 ]]
训练模型:
模型一般需要训练若干个epoch
每个epoch我们都把所有的数据分成若干个batch
把每个batch的输入和输出都包装成cuda tensor
forward pass,通过输入的句子预测每个单词的下一个单词
用模型的预测和正确的下一个单词计算cross entropy loss
清空模型当前gradient
backward pass
更新模型参数
每隔一定的iteration输出模型在当前iteration的loss,以及在验证数据集上做模型的评估
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE) for e in range(NUM_EPOCHS): for i, (input_labels, pos_labels, neg_labels) in enumerate(dataloader): input_labels = input_labels.long() pos_labels = pos_labels.long() neg_labels = neg_labels.long() if USE_CUDA: input_labels = input_labels.cuda() pos_labels = pos_labels.cuda() neg_labels = neg_labels.cuda() optimizer.zero_grad() loss = model(input_labels, pos_labels, neg_labels).mean() loss.backward() optimizer.step() if i % 100 == 0 : with open(LOG_FILE, "a" ) as fout: fout.write("epoch: {}, iter: {}, loss: {}\n" .format(e, i, loss.item())) print("epoch: {}, iter: {}, loss: {}" .format(e, i, loss.item())) if i % 2000 == 0 : embedding_weights = model.input_embeddings() sim_simlex = evaluate("simlex-999.txt" , embedding_weights) sim_men = evaluate("men.txt" , embedding_weights) sim_353 = evaluate("wordsim353.csv" , embedding_weights) with open(LOG_FILE, "a" ) as fout: print("epoch: {}, iteration: {}, simlex-999: {}, men: {}, sim353: {}, nearest to monster: {}\n" .format( e, i, sim_simlex, sim_men, sim_353, find_nearest("monster" ))) fout.write("epoch: {}, iteration: {}, simlex-999: {}, men: {}, sim353: {}, nearest to monster: {}\n" .format( e, i, sim_simlex, sim_men, sim_353, find_nearest("monster" ))) embedding_weights = model.input_embeddings() np.save("embedding-{}" .format(EMBEDDING_SIZE), embedding_weights) torch.save(model.state_dict(), "embedding-{}.th" .format(EMBEDDING_SIZE))
epoch: 0, iter: 0, loss: 420.04736328125
epoch: 0, iteration: 0, simlex-999: SpearmanrResult(correlation=0.002806243285464091, pvalue=0.9309107582703205), men: SpearmanrResult(correlation=-0.03578915454199749, pvalue=0.06854012381329619), sim353: SpearmanrResult(correlation=0.02468906830123471, pvalue=0.6609497549092586), nearest to monster: ['monster', 'communism', 'bosses', 'microprocessors', 'infectious', 'debussy', 'unesco', 'tantamount', 'offices', 'tischendorf']
epoch: 0, iter: 100, loss: 278.9967041015625
epoch: 0, iter: 200, loss: 248.71990966796875
epoch: 0, iter: 300, loss: 202.95816040039062
epoch: 0, iter: 400, loss: 157.04776000976562
epoch: 0, iter: 500, loss: 137.83531188964844
epoch: 0, iter: 600, loss: 121.03585815429688
epoch: 0, iter: 700, loss: 105.300537109375
epoch: 0, iter: 800, loss: 114.10055541992188
epoch: 0, iter: 900, loss: 104.72723388671875
epoch: 0, iter: 1000, loss: 99.03569030761719
epoch: 0, iter: 1100, loss: 95.2179946899414
epoch: 0, iter: 1200, loss: 84.12557983398438
epoch: 0, iter: 1300, loss: 88.07209777832031
epoch: 0, iter: 1400, loss: 70.44454193115234
epoch: 0, iter: 1500, loss: 79.83641052246094
epoch: 0, iter: 1600, loss: 81.7451171875
epoch: 0, iter: 1700, loss: 75.91305541992188
epoch: 0, iter: 1800, loss: 65.86140441894531
epoch: 0, iter: 1900, loss: 69.81714630126953
epoch: 0, iter: 2000, loss: 71.05166625976562
epoch: 0, iteration: 2000, simlex-999: SpearmanrResult(correlation=-0.011490367338787073, pvalue=0.7225847577400916), men: SpearmanrResult(correlation=0.05671509287050605, pvalue=0.0038790264864563434), sim353: SpearmanrResult(correlation=-0.07381419228558825, pvalue=0.18921537418718104), nearest to monster: ['monster', 'harm', 'steel', 'dean', 'kansas', 'surgery', 'regardless', 'capitalism', 'offers', 'hockey']
epoch: 0, iter: 2100, loss: 59.19840621948242
epoch: 0, iter: 2200, loss: 60.21418762207031
epoch: 0, iter: 2300, loss: 63.848148345947266
epoch: 0, iter: 2400, loss: 65.58479309082031
epoch: 0, iter: 2500, loss: 66.90382385253906
epoch: 0, iter: 2600, loss: 54.61847686767578
epoch: 0, iter: 2700, loss: 56.45966339111328
epoch: 0, iter: 2800, loss: 58.255210876464844
epoch: 0, iter: 2900, loss: 59.65287399291992
epoch: 0, iter: 3000, loss: 48.22801971435547
epoch: 0, iter: 3100, loss: 42.94969177246094
epoch: 0, iter: 3200, loss: 49.372528076171875
epoch: 0, iter: 3300, loss: 46.12495422363281
epoch: 0, iter: 3400, loss: 58.97121047973633
epoch: 0, iter: 3500, loss: 48.31055450439453
epoch: 0, iter: 3600, loss: 47.07227325439453
epoch: 0, iter: 3700, loss: 46.4068603515625
epoch: 0, iter: 3800, loss: 49.55707931518555
epoch: 0, iter: 3900, loss: 44.38733673095703
epoch: 0, iter: 4000, loss: 48.730342864990234
epoch: 0, iteration: 4000, simlex-999: SpearmanrResult(correlation=0.0190424235850696, pvalue=0.5562848091306694), men: SpearmanrResult(correlation=0.05404895260610133, pvalue=0.00592548586032086), sim353: SpearmanrResult(correlation=-0.039572591538143916, pvalue=0.4819454801463242), nearest to monster: ['monster', 'electrical', 'northeast', 'surgery', 'entity', 'certainly', 'tea', 'establishing', 'archbishop', 'aging']
epoch: 0, iter: 4100, loss: 57.70344161987305
epoch: 0, iter: 4200, loss: 47.464820861816406
epoch: 0, iter: 4300, loss: 47.08036804199219
epoch: 0, iter: 4400, loss: 46.652706146240234
epoch: 0, iter: 4500, loss: 40.824310302734375
epoch: 0, iter: 4600, loss: 40.62211227416992
epoch: 0, iter: 4700, loss: 50.84752655029297
epoch: 0, iter: 4800, loss: 41.230072021484375
epoch: 0, iter: 4900, loss: 53.74473571777344
epoch: 0, iter: 5000, loss: 42.35053253173828
epoch: 0, iter: 5100, loss: 38.363189697265625
epoch: 0, iter: 5200, loss: 42.772552490234375
epoch: 0, iter: 5300, loss: 44.914913177490234
epoch: 0, iter: 5400, loss: 38.4688720703125
epoch: 0, iter: 5500, loss: 41.0843391418457
epoch: 0, iter: 5600, loss: 35.04629898071289
epoch: 0, iter: 5700, loss: 35.49506759643555
epoch: 0, iter: 5800, loss: 36.009666442871094
epoch: 0, iter: 5900, loss: 40.56498718261719
epoch: 0, iter: 6000, loss: 45.853214263916016
epoch: 0, iteration: 6000, simlex-999: SpearmanrResult(correlation=0.04213372810279324, pvalue=0.19281410892481102), men: SpearmanrResult(correlation=0.06483263975087832, pvalue=0.0009600352172924885), sim353: SpearmanrResult(correlation=-0.015385630136134733, pvalue=0.7846219761829791), nearest to monster: ['monster', 'raw', 'romantic', 'oregon', 'protest', 'brunei', 'cartoon', 'offers', 'certainly', 'ill']
epoch: 0, iter: 6100, loss: 39.977508544921875
epoch: 0, iter: 6200, loss: 35.47979736328125
epoch: 0, iter: 6300, loss: 38.61311340332031
epoch: 0, iter: 6400, loss: 38.735679626464844
epoch: 0, iter: 6500, loss: 41.1725959777832
epoch: 0, iter: 6600, loss: 37.390037536621094
epoch: 0, iter: 6700, loss: 39.51911926269531
epoch: 0, iter: 6800, loss: 47.12213897705078
epoch: 0, iter: 6900, loss: 41.91630172729492
epoch: 0, iter: 7000, loss: 38.11504364013672
epoch: 0, iter: 7100, loss: 38.12763214111328
epoch: 0, iter: 7200, loss: 36.93813705444336
epoch: 0, iter: 7300, loss: 40.82877731323242
epoch: 0, iter: 7400, loss: 36.211429595947266
epoch: 0, iter: 7500, loss: 36.141693115234375
epoch: 0, iter: 7600, loss: 38.152610778808594
epoch: 0, iter: 7700, loss: 38.90789031982422
epoch: 0, iter: 7800, loss: 36.30712127685547
epoch: 0, iter: 7900, loss: 34.192440032958984
epoch: 0, iter: 8000, loss: 39.182212829589844
epoch: 0, iteration: 8000, simlex-999: SpearmanrResult(correlation=0.05506138271487322, pvalue=0.0886781241789579), men: SpearmanrResult(correlation=0.06796632118931804, pvalue=0.0005362832465382729), sim353: SpearmanrResult(correlation=-0.00727317983344893, pvalue=0.897207043425527), nearest to monster: ['monster', 'raw', 'romantic', 'strategic', 'offers', 'invited', 'signature', 'piano', 'protest', 'bills']
epoch: 0, iter: 8100, loss: 35.08313751220703
epoch: 0, iter: 8200, loss: 33.23561096191406
epoch: 0, iter: 8300, loss: 36.047096252441406
epoch: 0, iter: 8400, loss: 37.01750946044922
epoch: 0, iter: 8500, loss: 33.679561614990234
epoch: 0, iter: 8600, loss: 36.492515563964844
epoch: 0, iter: 8700, loss: 34.439537048339844
epoch: 0, iter: 8800, loss: 38.89817428588867
epoch: 0, iter: 8900, loss: 34.17725372314453
epoch: 0, iter: 9000, loss: 33.869651794433594
epoch: 0, iter: 9100, loss: 33.63176727294922
epoch: 0, iter: 9200, loss: 35.203460693359375
epoch: 0, iter: 9300, loss: 36.060142517089844
epoch: 0, iter: 9400, loss: 35.6544303894043
epoch: 0, iter: 9500, loss: 35.01182556152344
epoch: 0, iter: 9600, loss: 35.48432540893555
epoch: 0, iter: 9700, loss: 34.940696716308594
epoch: 0, iter: 9800, loss: 33.99235534667969
epoch: 0, iter: 9900, loss: 35.14078903198242
epoch: 0, iter: 10000, loss: 34.10219192504883
epoch: 0, iteration: 10000, simlex-999: SpearmanrResult(correlation=0.0714732189475033, pvalue=0.02703637716635098), men: SpearmanrResult(correlation=0.07013186360584196, pvalue=0.00035356323424747736), sim353: SpearmanrResult(correlation=-0.0013966072615024432, pvalue=0.9802088977698729), nearest to monster: ['monster', 'adoption', 'logo', 'particle', 'isle', 'remainder', 'profit', 'rank', 'execution', 'outer']
epoch: 0, iter: 10100, loss: 33.885284423828125
epoch: 0, iter: 10200, loss: 39.90406036376953
epoch: 0, iter: 10300, loss: 34.071014404296875
epoch: 0, iter: 10400, loss: 35.23554229736328
epoch: 0, iter: 10500, loss: 35.033878326416016
epoch: 0, iter: 10600, loss: 36.56634521484375
epoch: 0, iter: 10700, loss: 34.755027770996094
epoch: 0, iter: 10800, loss: 37.447967529296875
epoch: 0, iter: 10900, loss: 37.32883834838867
epoch: 0, iter: 11000, loss: 34.621700286865234
epoch: 0, iter: 11100, loss: 34.79033660888672
epoch: 0, iter: 11200, loss: 33.45790100097656
epoch: 0, iter: 11300, loss: 34.915672302246094
epoch: 0, iter: 11400, loss: 33.67906188964844
epoch: 0, iter: 11500, loss: 33.42378616333008
epoch: 0, iter: 11600, loss: 33.216270446777344
epoch: 0, iter: 11700, loss: 35.964393615722656
epoch: 0, iter: 11800, loss: 32.547569274902344
epoch: 0, iter: 11900, loss: 32.87192153930664
epoch: 0, iter: 12000, loss: 37.79120635986328
epoch: 0, iteration: 12000, simlex-999: SpearmanrResult(correlation=0.07427469122590927, pvalue=0.021568044209408773), men: SpearmanrResult(correlation=0.07554039135518772, pvalue=0.00011870202106880258), sim353: SpearmanrResult(correlation=0.003874488949244921, pvalue=0.9451327287240687), nearest to monster: ['monster', 'adoption', 'immediate', 'patent', 'sphere', 'execution', 'shell', 'nucleus', 'ghost', 'label']
epoch: 0, iter: 12100, loss: 33.59938430786133
epoch: 0, iter: 12200, loss: 32.594879150390625
epoch: 0, iter: 12300, loss: 32.42393493652344
epoch: 0, iter: 12400, loss: 32.8863410949707
epoch: 0, iter: 12500, loss: 39.303016662597656
epoch: 0, iter: 12600, loss: 33.103118896484375
epoch: 0, iter: 12700, loss: 36.31195068359375
epoch: 0, iter: 12800, loss: 33.8329963684082
epoch: 0, iter: 12900, loss: 32.499595642089844
epoch: 0, iter: 13000, loss: 33.224632263183594
epoch: 0, iter: 13100, loss: 33.931884765625
epoch: 0, iter: 13200, loss: 33.35892105102539
epoch: 0, iter: 13300, loss: 33.33966064453125
epoch: 0, iter: 13400, loss: 34.09075164794922
epoch: 0, iter: 13500, loss: 33.52397918701172
epoch: 0, iter: 13600, loss: 34.18444061279297
epoch: 0, iter: 13700, loss: 33.96720886230469
epoch: 0, iter: 13800, loss: 34.23271942138672
epoch: 0, iter: 13900, loss: 33.36094665527344
epoch: 0, iter: 14000, loss: 35.998287200927734
epoch: 0, iteration: 14000, simlex-999: SpearmanrResult(correlation=0.07498900438956249, pvalue=0.0203380930498303), men: SpearmanrResult(correlation=0.07885185599812983, pvalue=5.8687463983198815e-05), sim353: SpearmanrResult(correlation=0.019838726849964704, pvalue=0.7245257659604268), nearest to monster: ['monster', 'tale', 'patent', 'garden', 'outer', 'nucleus', 'logo', 'indians', 'fate', 'ghost']
epoch: 0, iter: 14100, loss: 32.86090087890625
epoch: 0, iter: 14200, loss: 32.27300262451172
epoch: 0, iter: 14300, loss: 32.97502136230469
epoch: 0, iter: 14400, loss: 33.18888473510742
epoch: 0, iter: 14500, loss: 33.709564208984375
epoch: 0, iter: 14600, loss: 33.725990295410156
epoch: 0, iter: 14700, loss: 34.124961853027344
epoch: 0, iter: 14800, loss: 34.69652557373047
epoch: 0, iter: 14900, loss: 36.399696350097656
epoch: 0, iter: 15000, loss: 32.656532287597656
epoch: 0, iter: 15100, loss: 33.403133392333984
epoch: 0, iter: 15200, loss: 32.11627960205078
epoch: 0, iter: 15300, loss: 32.489803314208984
epoch: 0, iter: 15400, loss: 32.96385192871094
epoch: 0, iter: 15500, loss: 33.85535430908203
epoch: 0, iter: 15600, loss: 33.443634033203125
epoch: 0, iter: 15700, loss: 32.89921569824219
epoch: 0, iter: 15800, loss: 31.661029815673828
epoch: 0, iter: 15900, loss: 32.627262115478516
epoch: 0, iter: 16000, loss: 32.10541534423828
epoch: 0, iteration: 16000, simlex-999: SpearmanrResult(correlation=0.0788889724045409, pvalue=0.014643454855412137), men: SpearmanrResult(correlation=0.08118046638145521, pvalue=3.517646407074078e-05), sim353: SpearmanrResult(correlation=0.03869824262332756, pvalue=0.49168668781560065), nearest to monster: ['monster', 'tale', 'patent', 'garden', 'logo', 'headquarters', 'floor', 'nucleus', 'hotel', 'outer']
epoch: 0, iter: 16100, loss: 32.40728759765625
epoch: 0, iter: 16200, loss: 32.153541564941406
epoch: 0, iter: 16300, loss: 32.54335021972656
epoch: 0, iter: 16400, loss: 33.81620788574219
epoch: 0, iter: 16500, loss: 33.6131591796875
epoch: 0, iter: 16600, loss: 33.012855529785156
epoch: 0, iter: 16700, loss: 32.9858512878418
epoch: 0, iter: 16800, loss: 32.339019775390625
epoch: 0, iter: 16900, loss: 33.2204475402832
epoch: 0, iter: 17000, loss: 32.71576690673828
epoch: 0, iter: 17100, loss: 33.55080795288086
epoch: 0, iter: 17200, loss: 32.817447662353516
epoch: 0, iter: 17300, loss: 34.78331756591797
epoch: 0, iter: 17400, loss: 32.013267517089844
epoch: 0, iter: 17500, loss: 32.31776428222656
epoch: 0, iter: 17600, loss: 32.81449508666992
epoch: 0, iter: 17700, loss: 32.663665771484375
epoch: 0, iter: 17800, loss: 32.64860534667969
epoch: 0, iter: 17900, loss: 32.25948715209961
epoch: 0, iter: 18000, loss: 33.899532318115234
epoch: 0, iteration: 18000, simlex-999: SpearmanrResult(correlation=0.08197570796707307, pvalue=0.01118359931439746), men: SpearmanrResult(correlation=0.08119437744439352, pvalue=3.5067625057299385e-05), sim353: SpearmanrResult(correlation=0.048031348197188906, pvalue=0.39330365782911914), nearest to monster: ['monster', 'tale', 'patent', 'household', 'dialogue', 'floor', 'sphere', 'mouse', 'fate', 'skin']
epoch: 0, iter: 18100, loss: 31.952678680419922
epoch: 0, iter: 18200, loss: 32.561737060546875
epoch: 0, iter: 18300, loss: 31.917354583740234
epoch: 0, iter: 18400, loss: 32.31993103027344
epoch: 0, iter: 18500, loss: 32.442169189453125
epoch: 0, iter: 18600, loss: 32.37964630126953
epoch: 0, iter: 18700, loss: 32.223846435546875
epoch: 0, iter: 18800, loss: 32.205589294433594
epoch: 0, iter: 18900, loss: 32.872222900390625
epoch: 0, iter: 19000, loss: 32.515403747558594
epoch: 0, iter: 19100, loss: 33.08296203613281
epoch: 0, iter: 19200, loss: 32.536170959472656
epoch: 0, iter: 19300, loss: 32.39844512939453
epoch: 0, iter: 19400, loss: 33.58967971801758
epoch: 0, iter: 19500, loss: 32.6730842590332
epoch: 0, iter: 19600, loss: 33.223388671875
epoch: 0, iter: 19700, loss: 32.08860397338867
epoch: 0, iter: 19800, loss: 31.78927993774414
epoch: 0, iter: 19900, loss: 31.92531967163086
epoch: 0, iter: 20000, loss: 32.14461898803711
epoch: 0, iteration: 20000, simlex-999: SpearmanrResult(correlation=0.08376406816249372, pvalue=0.00952959087521674), men: SpearmanrResult(correlation=0.08428805462978844, pvalue=1.7391127961421946e-05), sim353: SpearmanrResult(correlation=0.049551103193172526, pvalue=0.3784887673298559), nearest to monster: ['monster', 'patent', 'sword', 'household', 'dialogue', 'comprehensive', 'mouse', 'label', 'plain', 'tale']
epoch: 0, iter: 20100, loss: 32.788509368896484
epoch: 0, iter: 20200, loss: 31.743305206298828
epoch: 0, iter: 20300, loss: 32.98844909667969
epoch: 0, iter: 20400, loss: 32.939300537109375
epoch: 0, iter: 20500, loss: 32.22157669067383
epoch: 0, iter: 20600, loss: 32.10664367675781
epoch: 0, iter: 20700, loss: 32.317832946777344
epoch: 0, iter: 20800, loss: 32.22321701049805
epoch: 0, iter: 20900, loss: 32.078826904296875
epoch: 0, iter: 21000, loss: 32.00135803222656
epoch: 0, iter: 21100, loss: 32.2218017578125
epoch: 0, iter: 21200, loss: 32.36552047729492
epoch: 0, iter: 21300, loss: 32.28803253173828
epoch: 0, iter: 21400, loss: 32.49916076660156
epoch: 0, iter: 21500, loss: 31.330402374267578
epoch: 0, iter: 21600, loss: 32.153507232666016
epoch: 0, iter: 21700, loss: 32.27666473388672
epoch: 0, iter: 21800, loss: 31.28035545349121
epoch: 0, iter: 21900, loss: 31.78491973876953
epoch: 0, iter: 22000, loss: 32.09901428222656
epoch: 0, iteration: 22000, simlex-999: SpearmanrResult(correlation=0.0841933673566154, pvalue=0.009166514672039517), men: SpearmanrResult(correlation=0.08568243547516359, pvalue=1.2577781665179613e-05), sim353: SpearmanrResult(correlation=0.05233237611768227, pvalue=0.3522765894341572), nearest to monster: ['monster', 'sword', 'hero', 'ghost', 'patent', 'tale', 'comprehensive', 'plain', 'household', 'goddess']
epoch: 0, iter: 22100, loss: 32.55064392089844
epoch: 0, iter: 22200, loss: 32.269989013671875
epoch: 0, iter: 22300, loss: 31.861957550048828
epoch: 0, iter: 22400, loss: 35.57160949707031
epoch: 0, iter: 22500, loss: 31.28049087524414
epoch: 0, iter: 22600, loss: 32.447288513183594
epoch: 0, iter: 22700, loss: 31.807647705078125
epoch: 0, iter: 22800, loss: 31.540283203125
epoch: 0, iter: 22900, loss: 31.646018981933594
epoch: 0, iter: 23000, loss: 32.140228271484375
epoch: 0, iter: 23100, loss: 31.19212532043457
epoch: 0, iter: 23200, loss: 32.096595764160156
epoch: 0, iter: 23300, loss: 32.60624313354492
epoch: 0, iter: 23400, loss: 31.942745208740234
epoch: 0, iter: 23500, loss: 32.21788787841797
epoch: 0, iter: 23600, loss: 32.34299087524414
epoch: 0, iter: 23700, loss: 31.90642547607422
epoch: 0, iter: 23800, loss: 31.761348724365234
epoch: 0, iter: 23900, loss: 32.32670211791992
epoch: 0, iter: 24000, loss: 32.27470397949219
epoch: 0, iteration: 24000, simlex-999: SpearmanrResult(correlation=0.08547535475215376, pvalue=0.008154549896277891), men: SpearmanrResult(correlation=0.08635481027650124, pvalue=1.073940217602237e-05), sim353: SpearmanrResult(correlation=0.05715118428542604, pvalue=0.309644216967956), nearest to monster: ['monster', 'sword', 'hero', 'ghost', 'plain', 'household', 'situated', 'brand', 'torah', 'mouse']
epoch: 0, iter: 24100, loss: 31.711109161376953
epoch: 0, iter: 24200, loss: 31.729236602783203
epoch: 0, iter: 24300, loss: 31.751216888427734
epoch: 0, iter: 24400, loss: 31.54802131652832
epoch: 0, iter: 24500, loss: 31.819448471069336
epoch: 0, iter: 24600, loss: 31.87582778930664
epoch: 0, iter: 24700, loss: 32.44230651855469
epoch: 0, iter: 24800, loss: 32.13909149169922
epoch: 0, iter: 24900, loss: 31.6838321685791
epoch: 0, iter: 25000, loss: 32.01523208618164
epoch: 0, iter: 25100, loss: 31.727489471435547
epoch: 0, iter: 25200, loss: 32.378543853759766
epoch: 0, iter: 25300, loss: 32.155052185058594
epoch: 0, iter: 25400, loss: 32.30049514770508
epoch: 0, iter: 25500, loss: 32.10628128051758
epoch: 0, iter: 25600, loss: 32.01287841796875
epoch: 0, iter: 25700, loss: 32.22496032714844
epoch: 0, iter: 25800, loss: 32.15202331542969
epoch: 0, iter: 25900, loss: 32.43567657470703
epoch: 0, iter: 26000, loss: 31.745975494384766
epoch: 0, iteration: 26000, simlex-999: SpearmanrResult(correlation=0.08715629365703002, pvalue=0.0069793574982666565), men: SpearmanrResult(correlation=0.08749437789759629, pvalue=8.194697761171436e-06), sim353: SpearmanrResult(correlation=0.05971657549964074, pvalue=0.28839311254438554), nearest to monster: ['monster', 'sword', 'household', 'hero', 'tale', 'priest', 'label', 'plain', 'mouse', 'ghost']
epoch: 0, iter: 26100, loss: 32.09526824951172
epoch: 0, iter: 26200, loss: 31.927221298217773
epoch: 0, iter: 26300, loss: 31.239913940429688
epoch: 0, iter: 26400, loss: 31.676891326904297
epoch: 0, iter: 26500, loss: 31.83584213256836
epoch: 0, iter: 26600, loss: 32.34405517578125
epoch: 0, iter: 26700, loss: 31.836318969726562
epoch: 0, iter: 26800, loss: 31.805145263671875
epoch: 0, iter: 26900, loss: 31.517250061035156
epoch: 0, iter: 27000, loss: 32.060646057128906
epoch: 0, iter: 27100, loss: 31.427961349487305
epoch: 0, iter: 27200, loss: 32.71056365966797
epoch: 0, iter: 27300, loss: 32.101768493652344
epoch: 0, iter: 27400, loss: 31.706729888916016
epoch: 0, iter: 27500, loss: 31.794944763183594
epoch: 0, iter: 27600, loss: 31.043569564819336
epoch: 0, iter: 27700, loss: 31.815420150756836
epoch: 0, iter: 27800, loss: 31.480987548828125
epoch: 0, iter: 27900, loss: 32.0
epoch: 0, iter: 28000, loss: 31.647756576538086
epoch: 0, iteration: 28000, simlex-999: SpearmanrResult(correlation=0.0879225360679704, pvalue=0.006495932231970623), men: SpearmanrResult(correlation=0.08939464976521133, pvalue=5.181905435780726e-06), sim353: SpearmanrResult(correlation=0.06028361484068362, pvalue=0.28383120456458), nearest to monster: ['monster', 'sword', 'plain', 'mouse', 'tale', 'hero', 'brand', 'patent', 'tail', 'ghost']
epoch: 0, iter: 28100, loss: 31.732290267944336
epoch: 0, iter: 28200, loss: 31.56043243408203
epoch: 0, iter: 28300, loss: 32.17532730102539
epoch: 0, iter: 28400, loss: 32.34858322143555
epoch: 0, iter: 28500, loss: 31.321521759033203
epoch: 0, iter: 28600, loss: 31.24187469482422
epoch: 0, iter: 28700, loss: 31.808574676513672
epoch: 0, iter: 28800, loss: 31.126705169677734
epoch: 0, iter: 28900, loss: 32.27989959716797
epoch: 0, iter: 29000, loss: 31.510923385620117
epoch: 0, iter: 29100, loss: 32.18346405029297
epoch: 0, iter: 29200, loss: 31.19722557067871
epoch: 0, iter: 29300, loss: 31.348796844482422
epoch: 0, iter: 29400, loss: 32.03580856323242
epoch: 0, iter: 29500, loss: 31.560871124267578
epoch: 0, iter: 29600, loss: 32.1707763671875
epoch: 0, iter: 29700, loss: 31.646257400512695
epoch: 0, iter: 29800, loss: 32.089317321777344
epoch: 0, iter: 29900, loss: 31.21417808532715
epoch: 0, iter: 30000, loss: 31.596721649169922
epoch: 0, iteration: 30000, simlex-999: SpearmanrResult(correlation=0.0908617796694403, pvalue=0.00490825911563686), men: SpearmanrResult(correlation=0.09006953525508496, pvalue=4.393754176783815e-06), sim353: SpearmanrResult(correlation=0.06781615126644898, pvalue=0.22783225512951796), nearest to monster: ['monster', 'hero', 'sword', 'mouse', 'nickname', 'tale', 'plain', 'ghost', 'expedition', 'tube']
epoch: 0, iter: 30100, loss: 31.1719970703125
epoch: 0, iter: 30200, loss: 31.563777923583984
epoch: 0, iter: 30300, loss: 31.362476348876953
epoch: 0, iter: 30400, loss: 31.93914222717285
epoch: 0, iter: 30500, loss: 31.46084213256836
epoch: 0, iter: 30600, loss: 31.61031723022461
epoch: 0, iter: 30700, loss: 32.19886779785156
epoch: 0, iter: 30800, loss: 31.53145980834961
epoch: 0, iter: 30900, loss: 32.54494094848633
epoch: 0, iter: 31000, loss: 31.622350692749023
epoch: 0, iter: 31100, loss: 31.624622344970703
epoch: 0, iter: 31200, loss: 32.21925354003906
epoch: 0, iter: 31300, loss: 31.355022430419922
epoch: 0, iter: 31400, loss: 31.890806198120117
epoch: 0, iter: 31500, loss: 31.63449478149414
epoch: 0, iter: 31600, loss: 31.105436325073242
epoch: 0, iter: 31700, loss: 31.645238876342773
epoch: 0, iter: 31800, loss: 31.808307647705078
epoch: 0, iter: 31900, loss: 31.988243103027344
epoch: 0, iter: 32000, loss: 31.83148193359375
epoch: 0, iteration: 32000, simlex-999: SpearmanrResult(correlation=0.0910634737532756, pvalue=0.004813389051845152), men: SpearmanrResult(correlation=0.09222228979601282, pvalue=2.5756952028504964e-06), sim353: SpearmanrResult(correlation=0.07123238137344272, pvalue=0.20520429313982647), nearest to monster: ['monster', 'hero', 'nickname', 'sword', 'tale', 'plain', 'mouse', 'ghost', 'tail', 'tube']
epoch: 0, iter: 32100, loss: 31.311588287353516
epoch: 0, iter: 32200, loss: 31.257244110107422
epoch: 0, iter: 32300, loss: 31.649892807006836
epoch: 0, iter: 32400, loss: 31.635969161987305
epoch: 0, iter: 32500, loss: 31.34613037109375
epoch: 0, iter: 32600, loss: 31.666229248046875
epoch: 0, iter: 32700, loss: 31.63262176513672
epoch: 0, iter: 32800, loss: 31.727909088134766
epoch: 0, iter: 32900, loss: 32.014007568359375
epoch: 0, iter: 33000, loss: 31.64935302734375
epoch: 0, iter: 33100, loss: 31.75027084350586
epoch: 0, iter: 33200, loss: 30.913625717163086
epoch: 0, iter: 33300, loss: 32.485591888427734
epoch: 0, iter: 33400, loss: 30.946617126464844
epoch: 0, iter: 33500, loss: 31.906150817871094
epoch: 0, iter: 33600, loss: 31.456090927124023
epoch: 0, iter: 33700, loss: 31.70574188232422
epoch: 0, iter: 33800, loss: 31.611658096313477
epoch: 0, iter: 33900, loss: 31.901599884033203
epoch: 0, iter: 34000, loss: 30.904211044311523
epoch: 0, iteration: 34000, simlex-999: SpearmanrResult(correlation=0.09100297719676911, pvalue=0.004841669162232116), men: SpearmanrResult(correlation=0.09320434671047619, pvalue=2.0108242547194325e-06), sim353: SpearmanrResult(correlation=0.07643014870593084, pvalue=0.1739669852121724), nearest to monster: ['monster', 'nickname', 'tale', 'mouse', 'brand', 'hero', 'plain', 'partner', 'owner', 'cave']
epoch: 0, iter: 34100, loss: 30.875843048095703
epoch: 0, iter: 34200, loss: 31.53815460205078
epoch: 0, iter: 34300, loss: 31.3868465423584
epoch: 0, iter: 34400, loss: 31.618576049804688
epoch: 0, iter: 34500, loss: 31.38482666015625
epoch: 0, iter: 34600, loss: 31.517066955566406
epoch: 0, iter: 34700, loss: 31.297931671142578
epoch: 0, iter: 34800, loss: 31.131715774536133
epoch: 0, iter: 34900, loss: 31.34206199645996
epoch: 0, iter: 35000, loss: 31.198501586914062
epoch: 0, iter: 35100, loss: 31.92325782775879
epoch: 0, iter: 35200, loss: 31.495628356933594
epoch: 0, iter: 35300, loss: 31.19044303894043
epoch: 0, iter: 35400, loss: 31.896709442138672
epoch: 0, iter: 35500, loss: 31.638015747070312
epoch: 0, iter: 35600, loss: 31.722248077392578
epoch: 0, iter: 35700, loss: 31.750402450561523
epoch: 0, iter: 35800, loss: 31.107473373413086
epoch: 0, iter: 35900, loss: 31.830018997192383
epoch: 0, iter: 36000, loss: 31.638286590576172
epoch: 0, iteration: 36000, simlex-999: SpearmanrResult(correlation=0.09287122747290566, pvalue=0.004034242774511441), men: SpearmanrResult(correlation=0.09638454243178861, pvalue=8.867706115523595e-07), sim353: SpearmanrResult(correlation=0.08196414667104787, pvalue=0.14474986358858538), nearest to monster: ['monster', 'nickname', 'plain', 'sword', 'tail', 'mouse', 'brand', 'hero', 'tale', 'shell']
epoch: 0, iter: 36100, loss: 30.960386276245117
epoch: 0, iter: 36200, loss: 31.629940032958984
epoch: 0, iter: 36300, loss: 31.541032791137695
epoch: 0, iter: 36400, loss: 31.05801773071289
epoch: 0, iter: 36500, loss: 31.969802856445312
epoch: 0, iter: 36600, loss: 31.290489196777344
epoch: 0, iter: 36700, loss: 31.409465789794922
epoch: 0, iter: 36800, loss: 31.444076538085938
epoch: 0, iter: 36900, loss: 31.494474411010742
epoch: 0, iter: 37000, loss: 31.12554931640625
epoch: 0, iter: 37100, loss: 31.744049072265625
epoch: 0, iter: 37200, loss: 31.608917236328125
epoch: 0, iter: 37300, loss: 31.441722869873047
epoch: 0, iter: 37400, loss: 31.544227600097656
epoch: 0, iter: 37500, loss: 31.359806060791016
epoch: 0, iter: 37600, loss: 31.130847930908203
epoch: 0, iter: 37700, loss: 32.14916229248047
epoch: 0, iter: 37800, loss: 31.148212432861328
epoch: 0, iter: 37900, loss: 31.835248947143555
epoch: 0, iter: 38000, loss: 31.421974182128906
epoch: 0, iteration: 38000, simlex-999: SpearmanrResult(correlation=0.09401565185194706, pvalue=0.003602024110356835), men: SpearmanrResult(correlation=0.09723017395213002, pvalue=7.101718335843492e-07), sim353: SpearmanrResult(correlation=0.08744795260499, pvalue=0.1196457667795805), nearest to monster: ['monster', 'nickname', 'plain', 'sword', 'tail', 'hero', 'shell', 'brand', 'mouse', 'cave']
epoch: 0, iter: 38100, loss: 30.881635665893555
epoch: 0, iter: 38200, loss: 31.16852569580078
epoch: 0, iter: 38300, loss: 31.63935089111328
epoch: 0, iter: 38400, loss: 31.25921058654785
epoch: 0, iter: 38500, loss: 31.57360076904297
epoch: 0, iter: 38600, loss: 31.1456298828125
epoch: 0, iter: 38700, loss: 31.269453048706055
epoch: 0, iter: 38800, loss: 31.55490493774414
epoch: 0, iter: 38900, loss: 31.626995086669922
epoch: 0, iter: 39000, loss: 31.255146026611328
epoch: 0, iter: 39100, loss: 31.211166381835938
epoch: 0, iter: 39200, loss: 31.450740814208984
epoch: 0, iter: 39300, loss: 31.785430908203125
epoch: 0, iter: 39400, loss: 30.558988571166992
epoch: 0, iter: 39500, loss: 31.32469940185547
epoch: 0, iter: 39600, loss: 31.5628604888916
epoch: 0, iter: 39700, loss: 31.271900177001953
epoch: 0, iter: 39800, loss: 31.499229431152344
epoch: 0, iter: 39900, loss: 31.45954704284668
epoch: 0, iter: 40000, loss: 30.844253540039062
epoch: 0, iteration: 40000, simlex-999: SpearmanrResult(correlation=0.09659229076909075, pvalue=0.0027787052714036363), men: SpearmanrResult(correlation=0.09859835382112378, pvalue=4.938796863215718e-07), sim353: SpearmanrResult(correlation=0.09091941260502377, pvalue=0.10559925075777613), nearest to monster: ['monster', 'nickname', 'plain', 'hero', 'cave', 'sword', 'tail', 'owner', 'dialogue', 'mouse']
epoch: 0, iter: 40100, loss: 31.289958953857422
epoch: 0, iter: 40200, loss: 31.427631378173828
epoch: 0, iter: 40300, loss: 30.93175506591797
epoch: 0, iter: 40400, loss: 31.097423553466797
epoch: 0, iter: 40500, loss: 31.367881774902344
epoch: 0, iter: 40600, loss: 30.997957229614258
epoch: 0, iter: 40700, loss: 31.378498077392578
epoch: 0, iter: 40800, loss: 31.591278076171875
epoch: 0, iter: 40900, loss: 31.236934661865234
epoch: 0, iter: 41000, loss: 31.594310760498047
epoch: 0, iter: 41100, loss: 31.448932647705078
epoch: 0, iter: 41200, loss: 30.75921058654785
epoch: 0, iter: 41300, loss: 31.807411193847656
epoch: 0, iter: 41400, loss: 30.96005630493164
epoch: 0, iter: 41500, loss: 31.805885314941406
epoch: 0, iter: 41600, loss: 31.190258026123047
epoch: 0, iter: 41700, loss: 31.110252380371094
epoch: 0, iter: 41800, loss: 31.04319190979004
epoch: 0, iter: 41900, loss: 30.97702407836914
epoch: 0, iter: 42000, loss: 31.0760440826416
epoch: 0, iteration: 42000, simlex-999: SpearmanrResult(correlation=0.09849883639358918, pvalue=0.0022842954860782523), men: SpearmanrResult(correlation=0.09878607981201826, pvalue=4.696928075901211e-07), sim353: SpearmanrResult(correlation=0.09607407823044349, pvalue=0.08718116473821737), nearest to monster: ['monster', 'cave', 'plain', 'mouse', 'nickname', 'diamond', 'dialogue', 'partner', 'hero', 'signature']
epoch: 0, iter: 42100, loss: 31.264083862304688
epoch: 0, iter: 42200, loss: 31.662830352783203
epoch: 0, iter: 42300, loss: 30.693662643432617
epoch: 0, iter: 42400, loss: 31.405860900878906
epoch: 0, iter: 42500, loss: 30.938379287719727
epoch: 0, iter: 42600, loss: 31.08720588684082
epoch: 0, iter: 42700, loss: 31.5560302734375
epoch: 0, iter: 42800, loss: 31.49104881286621
epoch: 0, iter: 42900, loss: 31.75652503967285
epoch: 0, iter: 43000, loss: 31.436534881591797
epoch: 0, iter: 43100, loss: 31.30294418334961
epoch: 0, iter: 43200, loss: 30.177589416503906
epoch: 0, iter: 43300, loss: 31.117063522338867
epoch: 0, iter: 43400, loss: 30.985565185546875
epoch: 0, iter: 43500, loss: 30.83687973022461
epoch: 0, iter: 43600, loss: 31.235471725463867
epoch: 0, iter: 43700, loss: 31.702655792236328
epoch: 0, iter: 43800, loss: 31.2994441986084
epoch: 0, iter: 43900, loss: 30.892574310302734
epoch: 0, iter: 44000, loss: 31.143707275390625
epoch: 0, iteration: 44000, simlex-999: SpearmanrResult(correlation=0.1008180671120631, pvalue=0.001791807298558225), men: SpearmanrResult(correlation=0.09959304604435494, pvalue=3.781135368008198e-07), sim353: SpearmanrResult(correlation=0.10352488934150769, pvalue=0.06521224014872654), nearest to monster: ['monster', 'mouse', 'plain', 'nickname', 'cave', 'sword', 'boat', 'dialogue', 'partner', 'signature']
epoch: 0, iter: 44100, loss: 30.712566375732422
epoch: 0, iter: 44200, loss: 31.178279876708984
epoch: 0, iter: 44300, loss: 31.13910484313965
epoch: 0, iter: 44400, loss: 31.227054595947266
epoch: 0, iter: 44500, loss: 31.095703125
epoch: 0, iter: 44600, loss: 31.12378692626953
epoch: 0, iter: 44700, loss: 31.701740264892578
epoch: 0, iter: 44800, loss: 30.913339614868164
epoch: 0, iter: 44900, loss: 31.539695739746094
epoch: 0, iter: 45000, loss: 31.188980102539062
epoch: 0, iter: 45100, loss: 30.845016479492188
epoch: 0, iter: 45200, loss: 30.882841110229492
epoch: 0, iter: 45300, loss: 31.02661895751953
epoch: 0, iter: 45400, loss: 31.336511611938477
epoch: 0, iter: 45500, loss: 31.420623779296875
epoch: 0, iter: 45600, loss: 31.25517463684082
epoch: 0, iter: 45700, loss: 31.28260040283203
epoch: 0, iter: 45800, loss: 31.164663314819336
epoch: 0, iter: 45900, loss: 31.538354873657227
epoch: 0, iter: 46000, loss: 30.74416732788086
epoch: 0, iteration: 46000, simlex-999: SpearmanrResult(correlation=0.10155071688717769, pvalue=0.0016577893244519035), men: SpearmanrResult(correlation=0.10163250557010925, pvalue=2.1692539986465238e-07), sim353: SpearmanrResult(correlation=0.10604008852454751, pvalue=0.058912219453194116), nearest to monster: ['monster', 'plain', 'nickname', 'sword', 'parent', 'mouse', 'dialogue', 'blade', 'boat', 'cave']
epoch: 0, iter: 46100, loss: 31.790225982666016
epoch: 0, iter: 46200, loss: 31.57557487487793
epoch: 0, iter: 46300, loss: 31.457191467285156
epoch: 0, iter: 46400, loss: 31.26146697998047
epoch: 0, iter: 46500, loss: 31.269039154052734
epoch: 0, iter: 46600, loss: 31.480712890625
epoch: 0, iter: 46700, loss: 31.428335189819336
epoch: 0, iter: 46800, loss: 30.886512756347656
epoch: 0, iter: 46900, loss: 31.599918365478516
epoch: 0, iter: 47000, loss: 31.132366180419922
epoch: 0, iter: 47100, loss: 30.962696075439453
epoch: 0, iter: 47200, loss: 31.67426300048828
epoch: 0, iter: 47300, loss: 30.73318862915039
epoch: 0, iter: 47400, loss: 31.673181533813477
epoch: 0, iter: 47500, loss: 31.30075454711914
epoch: 0, iter: 47600, loss: 31.427719116210938
epoch: 0, iter: 47700, loss: 31.111129760742188
epoch: 0, iter: 47800, loss: 31.14962387084961
epoch: 0, iter: 47900, loss: 31.174724578857422
epoch: 0, iter: 48000, loss: 31.114784240722656
epoch: 0, iteration: 48000, simlex-999: SpearmanrResult(correlation=0.10335720444738267, pvalue=0.0013657280173897167), men: SpearmanrResult(correlation=0.10165177484469035, pvalue=2.157784847483254e-07), sim353: SpearmanrResult(correlation=0.11041761731040038, pvalue=0.049149368437484346), nearest to monster: ['monster', 'plain', 'nickname', 'parent', 'sword', 'blade', 'tail', 'dialogue', 'cave', 'boat']
epoch: 0, iter: 48100, loss: 31.263320922851562
epoch: 0, iter: 48200, loss: 31.267719268798828
epoch: 0, iter: 48300, loss: 31.259817123413086
epoch: 0, iter: 48400, loss: 30.922761917114258
epoch: 0, iter: 48500, loss: 31.48914909362793
epoch: 0, iter: 48600, loss: 31.45376205444336
epoch: 0, iter: 48700, loss: 30.948339462280273
epoch: 0, iter: 48800, loss: 30.842824935913086
epoch: 0, iter: 48900, loss: 30.931697845458984
epoch: 0, iter: 49000, loss: 31.468204498291016
epoch: 0, iter: 49100, loss: 31.04726791381836
epoch: 0, iter: 49200, loss: 31.148698806762695
epoch: 0, iter: 49300, loss: 31.295198440551758
epoch: 0, iter: 49400, loss: 31.415983200073242
epoch: 0, iter: 49500, loss: 31.53121566772461
epoch: 0, iter: 49600, loss: 30.391773223876953
epoch: 0, iter: 49700, loss: 31.365924835205078
epoch: 0, iter: 49800, loss: 30.920448303222656
epoch: 0, iter: 49900, loss: 30.881540298461914
epoch: 0, iter: 50000, loss: 31.272510528564453
epoch: 0, iteration: 50000, simlex-999: SpearmanrResult(correlation=0.10413335271622073, pvalue=0.0012554545146236879), men: SpearmanrResult(correlation=0.10361287469529604, pvalue=1.251734153196469e-07), sim353: SpearmanrResult(correlation=0.11252176428274015, pvalue=0.04496085066226139), nearest to monster: ['monster', 'parent', 'sword', 'nickname', 'boat', 'plain', 'tail', 'leg', 'mouse', 'blade']
epoch: 0, iter: 50100, loss: 31.378141403198242
epoch: 0, iter: 50200, loss: 30.816102981567383
epoch: 0, iter: 50300, loss: 30.845239639282227
epoch: 0, iter: 50400, loss: 30.991004943847656
epoch: 0, iter: 50500, loss: 30.891719818115234
epoch: 0, iter: 50600, loss: 31.482940673828125
epoch: 0, iter: 50700, loss: 31.31090545654297
epoch: 0, iter: 50800, loss: 31.34703826904297
epoch: 0, iter: 50900, loss: 31.271032333374023
epoch: 0, iter: 51000, loss: 31.262798309326172
epoch: 0, iter: 51100, loss: 31.295764923095703
epoch: 0, iter: 51200, loss: 31.204692840576172
epoch: 0, iter: 51300, loss: 31.768779754638672
epoch: 0, iter: 51400, loss: 30.988128662109375
epoch: 0, iter: 51500, loss: 31.494434356689453
epoch: 0, iter: 51600, loss: 31.034160614013672
epoch: 0, iter: 51700, loss: 31.57693099975586
epoch: 0, iter: 51800, loss: 31.073469161987305
epoch: 0, iter: 51900, loss: 30.947439193725586
epoch: 0, iter: 52000, loss: 31.44693374633789
epoch: 0, iteration: 52000, simlex-999: SpearmanrResult(correlation=0.10512161472015334, pvalue=0.0011269247727856127), men: SpearmanrResult(correlation=0.10482327567400625, pvalue=8.899831939238548e-08), sim353: SpearmanrResult(correlation=0.11557228293582009, pvalue=0.03942341315579966), nearest to monster: ['monster', 'parent', 'plain', 'nickname', 'tail', 'blade', 'leg', 'sword', 'mouse', 'signature']
epoch: 0, iter: 52100, loss: 31.460336685180664
epoch: 0, iter: 52200, loss: 31.668170928955078
epoch: 0, iter: 52300, loss: 30.479820251464844
epoch: 0, iter: 52400, loss: 31.74282455444336
epoch: 0, iter: 52500, loss: 30.803956985473633
epoch: 0, iter: 52600, loss: 30.81981658935547
epoch: 0, iter: 52700, loss: 31.19491958618164
epoch: 0, iter: 52800, loss: 31.08262825012207
epoch: 0, iter: 52900, loss: 31.718488693237305
epoch: 0, iter: 53000, loss: 30.93524932861328
epoch: 0, iter: 53100, loss: 31.013084411621094
epoch: 0, iter: 53200, loss: 30.91759490966797
epoch: 0, iter: 53300, loss: 31.814682006835938
epoch: 0, iter: 53400, loss: 30.962512969970703
epoch: 0, iter: 53500, loss: 30.939342498779297
epoch: 0, iter: 53600, loss: 31.67828369140625
epoch: 0, iter: 53700, loss: 31.302024841308594
epoch: 0, iter: 53800, loss: 30.955366134643555
epoch: 0, iter: 53900, loss: 31.510623931884766
epoch: 0, iter: 54000, loss: 30.676362991333008
epoch: 0, iteration: 54000, simlex-999: SpearmanrResult(correlation=0.10549625057039985, pvalue=0.0010814608115210568), men: SpearmanrResult(correlation=0.10721055714110006, pvalue=4.4913037691946484e-08), sim353: SpearmanrResult(correlation=0.11769079714384932, pvalue=0.03592648928681193), nearest to monster: ['monster', 'cave', 'plain', 'tail', 'nickname', 'leg', 'parent', 'blade', 'ghost', 'sword']
epoch: 0, iter: 54100, loss: 30.862953186035156
epoch: 0, iter: 54200, loss: 31.025741577148438
epoch: 0, iter: 54300, loss: 31.63794708251953
epoch: 0, iter: 54400, loss: 31.128381729125977
epoch: 0, iter: 54500, loss: 31.111047744750977
epoch: 0, iter: 54600, loss: 31.013673782348633
epoch: 0, iter: 54700, loss: 31.087692260742188
epoch: 0, iter: 54800, loss: 31.236892700195312
epoch: 0, iter: 54900, loss: 31.256492614746094
epoch: 0, iter: 55000, loss: 31.33741569519043
epoch: 0, iter: 55100, loss: 30.920692443847656
epoch: 0, iter: 55200, loss: 30.418161392211914
epoch: 0, iter: 55300, loss: 31.029638290405273
epoch: 0, iter: 55400, loss: 30.816083908081055
epoch: 0, iter: 55500, loss: 31.28571891784668
epoch: 0, iter: 55600, loss: 30.913631439208984
epoch: 0, iter: 55700, loss: 31.216411590576172
epoch: 0, iter: 55800, loss: 30.906490325927734
epoch: 0, iter: 55900, loss: 31.138019561767578
epoch: 0, iter: 56000, loss: 31.294254302978516
epoch: 0, iteration: 56000, simlex-999: SpearmanrResult(correlation=0.10747042881452093, pvalue=0.000868628570627656), men: SpearmanrResult(correlation=0.10889856420740306, pvalue=2.7445360530151176e-08), sim353: SpearmanrResult(correlation=0.12059633732769914, pvalue=0.03156119729084597), nearest to monster: ['monster', 'leg', 'tail', 'plain', 'nickname', 'sword', 'cave', 'parent', 'signature', 'blade']
epoch: 0, iter: 56100, loss: 31.756465911865234
epoch: 0, iter: 56200, loss: 30.841522216796875
epoch: 0, iter: 56300, loss: 31.101408004760742
epoch: 0, iter: 56400, loss: 30.875770568847656
epoch: 0, iter: 56500, loss: 31.620193481445312
epoch: 0, iter: 56600, loss: 31.299055099487305
epoch: 0, iter: 56700, loss: 31.310087203979492
epoch: 0, iter: 56800, loss: 31.34184455871582
epoch: 0, iter: 56900, loss: 31.240936279296875
epoch: 0, iter: 57000, loss: 30.90418815612793
epoch: 0, iter: 57100, loss: 31.257062911987305
epoch: 0, iter: 57200, loss: 31.695873260498047
epoch: 0, iter: 57300, loss: 30.94247055053711
epoch: 0, iter: 57400, loss: 30.684371948242188
epoch: 0, iter: 57500, loss: 31.504837036132812
epoch: 0, iter: 57600, loss: 31.262527465820312
epoch: 0, iter: 57700, loss: 31.38228988647461
epoch: 0, iter: 57800, loss: 31.27547836303711
epoch: 0, iter: 57900, loss: 30.56299591064453
epoch: 0, iter: 58000, loss: 30.96505355834961
epoch: 0, iteration: 58000, simlex-999: SpearmanrResult(correlation=0.10726587013548153, pvalue=0.0008887284442590619), men: SpearmanrResult(correlation=0.1093378019236274, pvalue=2.411455598304873e-08), sim353: SpearmanrResult(correlation=0.12085774638225694, pvalue=0.031191656645013426), nearest to monster: ['monster', 'tail', 'mouse', 'plain', 'blade', 'cave', 'signature', 'dubbed', 'angel', 'leg']
epoch: 0, iter: 58100, loss: 30.774898529052734
epoch: 0, iter: 58200, loss: 31.404376983642578
epoch: 0, iter: 58300, loss: 31.18744659423828
epoch: 0, iter: 58400, loss: 30.777774810791016
epoch: 0, iter: 58500, loss: 31.30267333984375
epoch: 0, iter: 58600, loss: 31.17416763305664
epoch: 0, iter: 58700, loss: 30.96724510192871
epoch: 0, iter: 58800, loss: 31.406417846679688
epoch: 0, iter: 58900, loss: 30.588558197021484
epoch: 0, iter: 59000, loss: 30.476577758789062
epoch: 0, iter: 59100, loss: 30.78055763244629
epoch: 0, iter: 59200, loss: 31.018653869628906
epoch: 0, iter: 59300, loss: 31.332136154174805
epoch: 0, iter: 59400, loss: 31.59677505493164
epoch: 0, iter: 59500, loss: 31.528217315673828
epoch: 0, iter: 59600, loss: 30.44378662109375
epoch: 0, iter: 59700, loss: 30.718303680419922
epoch: 0, iter: 59800, loss: 30.775535583496094
epoch: 0, iter: 59900, loss: 31.164199829101562
epoch: 0, iter: 60000, loss: 31.144628524780273
epoch: 0, iteration: 60000, simlex-999: SpearmanrResult(correlation=0.10787079798749166, pvalue=0.0008305009335772662), men: SpearmanrResult(correlation=0.11117447271855486, pvalue=1.3962055373097627e-08), sim353: SpearmanrResult(correlation=0.12349889211192522, pvalue=0.027660751055994845), nearest to monster: ['monster', 'tail', 'signature', 'blade', 'angel', 'dubbed', 'mouse', 'pole', 'owner', 'plain']
epoch: 0, iter: 60100, loss: 31.20758056640625
epoch: 0, iter: 60200, loss: 30.711570739746094
epoch: 0, iter: 60300, loss: 30.836360931396484
epoch: 0, iter: 60400, loss: 30.35114097595215
epoch: 0, iter: 60500, loss: 30.544240951538086
epoch: 0, iter: 60600, loss: 31.264543533325195
epoch: 0, iter: 60700, loss: 31.218517303466797
epoch: 0, iter: 60800, loss: 31.23360824584961
epoch: 0, iter: 60900, loss: 30.85096549987793
epoch: 0, iter: 61000, loss: 30.768386840820312
epoch: 0, iter: 61100, loss: 31.50748634338379
epoch: 0, iter: 61200, loss: 30.46345329284668
epoch: 0, iter: 61300, loss: 30.543607711791992
epoch: 0, iter: 61400, loss: 30.628982543945312
epoch: 0, iter: 61500, loss: 31.45627784729004
epoch: 0, iter: 61600, loss: 31.070459365844727
epoch: 0, iter: 61700, loss: 30.569217681884766
epoch: 0, iter: 61800, loss: 30.83639907836914
epoch: 0, iter: 61900, loss: 31.005922317504883
epoch: 0, iter: 62000, loss: 31.41488265991211
epoch: 0, iteration: 62000, simlex-999: SpearmanrResult(correlation=0.11119875283206068, pvalue=0.0005685786512505508), men: SpearmanrResult(correlation=0.11318488733549789, pvalue=7.599257092187759e-09), sim353: SpearmanrResult(correlation=0.12779805415765372, pvalue=0.022646548827240445), nearest to monster: ['monster', 'tail', 'blade', 'signature', 'plain', 'mouse', 'pole', 'boat', 'owner', 'leg']
epoch: 0, iter: 62100, loss: 31.053007125854492
epoch: 0, iter: 62200, loss: 30.765029907226562
epoch: 0, iter: 62300, loss: 31.114418029785156
epoch: 0, iter: 62400, loss: 30.98143768310547
epoch: 0, iter: 62500, loss: 31.071922302246094
epoch: 0, iter: 62600, loss: 31.17368507385254
epoch: 0, iter: 62700, loss: 31.177242279052734
epoch: 0, iter: 62800, loss: 31.408926010131836
epoch: 0, iter: 62900, loss: 30.88961410522461
epoch: 0, iter: 63000, loss: 30.848337173461914
epoch: 0, iter: 63100, loss: 30.798885345458984
epoch: 0, iter: 63200, loss: 30.96042251586914
epoch: 0, iter: 63300, loss: 30.656030654907227
epoch: 0, iter: 63400, loss: 31.166887283325195
epoch: 0, iter: 63500, loss: 30.926340103149414
epoch: 0, iter: 63600, loss: 31.11106300354004
epoch: 0, iter: 63700, loss: 31.001605987548828
epoch: 0, iter: 63800, loss: 30.872831344604492
epoch: 0, iter: 63900, loss: 31.2712345123291
epoch: 0, iter: 64000, loss: 31.084636688232422
epoch: 0, iteration: 64000, simlex-999: SpearmanrResult(correlation=0.11095436079645714, pvalue=0.0005848267448603055), men: SpearmanrResult(correlation=0.11504369222990082, pvalue=4.28960553784828e-09), sim353: SpearmanrResult(correlation=0.1318387925484482, pvalue=0.01867078025276011), nearest to monster: ['monster', 'blade', 'tail', 'boat', 'nickname', 'owner', 'leg', 'plain', 'pole', 'ghost']
epoch: 0, iter: 64100, loss: 30.403200149536133
epoch: 0, iter: 64200, loss: 31.01869010925293
epoch: 0, iter: 64300, loss: 30.85900115966797
epoch: 0, iter: 64400, loss: 31.06339454650879
epoch: 0, iter: 64500, loss: 31.443498611450195
epoch: 0, iter: 64600, loss: 30.922685623168945
epoch: 0, iter: 64700, loss: 30.92823028564453
epoch: 0, iter: 64800, loss: 30.95685577392578
epoch: 0, iter: 64900, loss: 31.249370574951172
epoch: 0, iter: 65000, loss: 31.283973693847656
epoch: 0, iter: 65100, loss: 31.421056747436523
epoch: 0, iter: 65200, loss: 31.271799087524414
epoch: 0, iter: 65300, loss: 31.055686950683594
epoch: 0, iter: 65400, loss: 31.06484603881836
epoch: 0, iter: 65500, loss: 31.523380279541016
epoch: 0, iter: 65600, loss: 30.86985969543457
epoch: 0, iter: 65700, loss: 31.431381225585938
epoch: 0, iter: 65800, loss: 30.828258514404297
epoch: 0, iter: 65900, loss: 30.777324676513672
epoch: 0, iter: 66000, loss: 30.793434143066406
epoch: 0, iteration: 66000, simlex-999: SpearmanrResult(correlation=0.11336484593643655, pvalue=0.000441848134889879), men: SpearmanrResult(correlation=0.11607771416192764, pvalue=3.108529516895944e-09), sim353: SpearmanrResult(correlation=0.13567689693977825, pvalue=0.015471766603603733), nearest to monster: ['monster', 'blade', 'tail', 'boat', 'plain', 'mouse', 'leg', 'dubbed', 'angel', 'signature']
epoch: 0, iter: 66100, loss: 30.86065101623535
epoch: 0, iter: 66200, loss: 30.876815795898438
epoch: 0, iter: 66300, loss: 31.069660186767578
epoch: 0, iter: 66400, loss: 30.777523040771484
epoch: 0, iter: 66500, loss: 31.19533920288086
epoch: 0, iter: 66600, loss: 30.554855346679688
epoch: 0, iter: 66700, loss: 30.99230194091797
epoch: 0, iter: 66800, loss: 31.07242202758789
epoch: 0, iter: 66900, loss: 30.73615264892578
epoch: 0, iter: 67000, loss: 31.139455795288086
epoch: 0, iter: 67100, loss: 30.713550567626953
epoch: 0, iter: 67200, loss: 31.377769470214844
epoch: 0, iter: 67300, loss: 31.406234741210938
epoch: 0, iter: 67400, loss: 30.695165634155273
epoch: 0, iter: 67500, loss: 31.24422836303711
epoch: 0, iter: 67600, loss: 30.47709083557129
epoch: 0, iter: 67700, loss: 30.54576301574707
epoch: 0, iter: 67800, loss: 31.31440544128418
epoch: 0, iter: 67900, loss: 30.91347312927246
epoch: 0, iter: 68000, loss: 31.376529693603516
epoch: 0, iteration: 68000, simlex-999: SpearmanrResult(correlation=0.11452703856698428, pvalue=0.00038523421818805733), men: SpearmanrResult(correlation=0.11616177986176482, pvalue=3.027823236694649e-09), sim353: SpearmanrResult(correlation=0.13998669447166648, pvalue=0.012461259148780957), nearest to monster: ['monster', 'boat', 'blade', 'signature', 'tail', 'dubbed', 'mouse', 'cave', 'angel', 'replacing']
epoch: 0, iter: 68100, loss: 30.246761322021484
epoch: 0, iter: 68200, loss: 31.031679153442383
epoch: 0, iter: 68300, loss: 31.415462493896484
epoch: 0, iter: 68400, loss: 30.809803009033203
epoch: 0, iter: 68500, loss: 31.034048080444336
epoch: 0, iter: 68600, loss: 31.134660720825195
epoch: 0, iter: 68700, loss: 31.344093322753906
epoch: 0, iter: 68800, loss: 31.488487243652344
epoch: 0, iter: 68900, loss: 31.44832992553711
epoch: 0, iter: 69000, loss: 30.69766616821289
epoch: 0, iter: 69100, loss: 31.20623016357422
epoch: 0, iter: 69200, loss: 31.305984497070312
epoch: 0, iter: 69300, loss: 30.8837947845459
epoch: 0, iter: 69400, loss: 30.787147521972656
epoch: 0, iter: 69500, loss: 30.73443603515625
epoch: 0, iter: 69600, loss: 30.5230712890625
epoch: 0, iter: 69700, loss: 30.885122299194336
epoch: 0, iter: 69800, loss: 30.608633041381836
epoch: 0, iter: 69900, loss: 31.044784545898438
epoch: 0, iter: 70000, loss: 30.79353141784668
epoch: 0, iteration: 70000, simlex-999: SpearmanrResult(correlation=0.11447412364241306, pvalue=0.00038765739483096796), men: SpearmanrResult(correlation=0.11756886224004129, pvalue=1.944056651206125e-09), sim353: SpearmanrResult(correlation=0.1422861985318877, pvalue=0.011076632617477473), nearest to monster: ['monster', 'boat', 'mouse', 'blade', 'angel', 'replacing', 'leg', 'signature', 'legendary', 'tail']
epoch: 0, iter: 70100, loss: 31.068965911865234
epoch: 0, iter: 70200, loss: 31.09067153930664
epoch: 0, iter: 70300, loss: 30.815410614013672
epoch: 0, iter: 70400, loss: 31.200820922851562
epoch: 0, iter: 70500, loss: 30.970481872558594
epoch: 0, iter: 70600, loss: 30.677066802978516
epoch: 0, iter: 70700, loss: 31.553955078125
epoch: 0, iter: 70800, loss: 30.71514892578125
epoch: 0, iter: 70900, loss: 30.628828048706055
epoch: 0, iter: 71000, loss: 30.579029083251953
epoch: 0, iter: 71100, loss: 30.71631622314453
epoch: 0, iter: 71200, loss: 31.383621215820312
epoch: 0, iter: 71300, loss: 30.815113067626953
epoch: 0, iter: 71400, loss: 31.219520568847656
epoch: 0, iter: 71500, loss: 30.879241943359375
epoch: 0, iter: 71600, loss: 30.864967346191406
epoch: 0, iter: 71700, loss: 31.130123138427734
epoch: 0, iter: 71800, loss: 31.275012969970703
epoch: 0, iter: 71900, loss: 30.728538513183594
epoch: 0, iter: 72000, loss: 30.295608520507812
epoch: 0, iteration: 72000, simlex-999: SpearmanrResult(correlation=0.11509252437598057, pvalue=0.00036020627011201973), men: SpearmanrResult(correlation=0.11721625827550092, pvalue=2.173406746828479e-09), sim353: SpearmanrResult(correlation=0.15003741548009542, pvalue=0.007357771752434236), nearest to monster: ['monster', 'boat', 'leg', 'angel', 'replacing', 'pole', 'legendary', 'tail', 'mouse', 'signature']
epoch: 0, iter: 72100, loss: 30.66713523864746
epoch: 0, iter: 72200, loss: 30.61351776123047
epoch: 0, iter: 72300, loss: 31.320636749267578
epoch: 0, iter: 72400, loss: 31.034809112548828
epoch: 0, iter: 72500, loss: 31.062036514282227
epoch: 0, iter: 72600, loss: 30.442829132080078
epoch: 0, iter: 72700, loss: 30.91510581970215
epoch: 0, iter: 72800, loss: 30.70620346069336
epoch: 0, iter: 72900, loss: 30.421703338623047
epoch: 0, iter: 73000, loss: 30.53826141357422
epoch: 0, iter: 73100, loss: 30.770679473876953
epoch: 0, iter: 73200, loss: 31.04900360107422
epoch: 0, iter: 73300, loss: 30.795854568481445
epoch: 0, iter: 73400, loss: 31.299104690551758
epoch: 0, iter: 73500, loss: 30.484947204589844
epoch: 0, iter: 73600, loss: 30.79161834716797
epoch: 0, iter: 73700, loss: 30.636621475219727
epoch: 0, iter: 73800, loss: 31.00129508972168
epoch: 0, iter: 73900, loss: 30.91973114013672
epoch: 0, iter: 74000, loss: 31.55290985107422
epoch: 0, iteration: 74000, simlex-999: SpearmanrResult(correlation=0.11672803148915531, pvalue=0.0002961005658581428), men: SpearmanrResult(correlation=0.11817601695076835, pvalue=1.6031687449902205e-09), sim353: SpearmanrResult(correlation=0.15298232562148392, pvalue=0.006267834790300931), nearest to monster: ['monster', 'angel', 'legendary', 'leg', 'boat', 'replacing', 'tail', 'dubbed', 'cave', 'pole']
epoch: 0, iter: 74100, loss: 31.169639587402344
epoch: 0, iter: 74200, loss: 30.829368591308594
epoch: 0, iter: 74300, loss: 30.788063049316406
epoch: 0, iter: 74400, loss: 30.632108688354492
epoch: 0, iter: 74500, loss: 30.72389030456543
epoch: 0, iter: 74600, loss: 30.648719787597656
epoch: 0, iter: 74700, loss: 31.583736419677734
epoch: 0, iter: 74800, loss: 30.765384674072266
epoch: 0, iter: 74900, loss: 30.931472778320312
epoch: 0, iter: 75000, loss: 30.993127822875977
epoch: 0, iter: 75100, loss: 30.643539428710938
epoch: 0, iter: 75200, loss: 30.458595275878906
epoch: 0, iter: 75300, loss: 30.298744201660156
epoch: 0, iter: 75400, loss: 30.824840545654297
epoch: 0, iter: 75500, loss: 31.22673797607422
epoch: 0, iter: 75600, loss: 30.644241333007812
epoch: 0, iter: 75700, loss: 30.66327667236328
epoch: 0, iter: 75800, loss: 31.115676879882812
epoch: 0, iter: 75900, loss: 30.466846466064453
epoch: 0, iter: 76000, loss: 30.9396915435791
epoch: 0, iteration: 76000, simlex-999: SpearmanrResult(correlation=0.11596381543200739, pvalue=0.00032459762253928627), men: SpearmanrResult(correlation=0.11879493045996324, pvalue=1.3158101883470934e-09), sim353: SpearmanrResult(correlation=0.15550872005311292, pvalue=0.005450575993741813), nearest to monster: ['monster', 'angel', 'blade', 'replacing', 'boat', 'legendary', 'dubbed', 'leg', 'pole', 'tail']
epoch: 0, iter: 76100, loss: 30.884302139282227
epoch: 0, iter: 76200, loss: 30.992034912109375
epoch: 0, iter: 76300, loss: 30.93535041809082
epoch: 0, iter: 76400, loss: 31.227296829223633
epoch: 0, iter: 76500, loss: 30.600688934326172
epoch: 0, iter: 76600, loss: 30.734973907470703
epoch: 0, iter: 76700, loss: 31.285720825195312
epoch: 0, iter: 76800, loss: 30.783761978149414
epoch: 0, iter: 76900, loss: 31.069557189941406
epoch: 0, iter: 77000, loss: 31.12335205078125
epoch: 0, iter: 77100, loss: 30.547470092773438
epoch: 0, iter: 77200, loss: 30.63747215270996
epoch: 0, iter: 77300, loss: 30.923892974853516
epoch: 0, iter: 77400, loss: 30.970041275024414
epoch: 0, iter: 77500, loss: 31.035385131835938
epoch: 0, iter: 77600, loss: 30.704097747802734
epoch: 0, iter: 77700, loss: 30.910247802734375
epoch: 0, iter: 77800, loss: 30.7044734954834
epoch: 0, iter: 77900, loss: 30.660982131958008
epoch: 0, iter: 78000, loss: 30.560914993286133
epoch: 0, iteration: 78000, simlex-999: SpearmanrResult(correlation=0.11666061112723143, pvalue=0.00029851725007368435), men: SpearmanrResult(correlation=0.12038941573817902, pvalue=7.873392979563775e-10), sim353: SpearmanrResult(correlation=0.15946717336677685, pvalue=0.004361303455838544), nearest to monster: ['monster', 'angel', 'legendary', 'blade', 'boat', 'leg', 'replacing', 'signature', 'tail', 'epic']
epoch: 0, iter: 78100, loss: 31.013874053955078
epoch: 0, iter: 78200, loss: 30.866724014282227
epoch: 0, iter: 78300, loss: 30.68968391418457
epoch: 0, iter: 78400, loss: 31.183582305908203
epoch: 0, iter: 78500, loss: 31.27776336669922
epoch: 0, iter: 78600, loss: 30.777645111083984
epoch: 0, iter: 78700, loss: 31.012584686279297
epoch: 0, iter: 78800, loss: 31.096542358398438
epoch: 0, iter: 78900, loss: 31.362171173095703
epoch: 0, iter: 79000, loss: 30.738359451293945
epoch: 0, iter: 79100, loss: 31.230934143066406
epoch: 0, iter: 79200, loss: 31.539630889892578
epoch: 0, iter: 79300, loss: 30.64007568359375
epoch: 0, iter: 79400, loss: 30.633243560791016
epoch: 0, iter: 79500, loss: 30.83672332763672
epoch: 0, iter: 79600, loss: 30.83807945251465
epoch: 0, iter: 79700, loss: 30.863502502441406
epoch: 0, iter: 79800, loss: 31.011892318725586
epoch: 0, iter: 79900, loss: 30.918609619140625
epoch: 0, iter: 80000, loss: 30.889875411987305
epoch: 0, iteration: 80000, simlex-999: SpearmanrResult(correlation=0.11674166145672565, pvalue=0.0002956142280039947), men: SpearmanrResult(correlation=0.12076227513300175, pvalue=6.975679989657089e-10), sim353: SpearmanrResult(correlation=0.16263542871751985, pvalue=0.00363550206573609), nearest to monster: ['monster', 'blade', 'boat', 'leg', 'legendary', 'bird', 'angel', 'tail', 'signature', 'replacing']
epoch: 0, iter: 80100, loss: 30.875946044921875
epoch: 0, iter: 80200, loss: 31.290252685546875
epoch: 0, iter: 80300, loss: 30.575260162353516
epoch: 0, iter: 80400, loss: 31.11186981201172
epoch: 0, iter: 80500, loss: 30.141450881958008
epoch: 0, iter: 80600, loss: 30.628923416137695
epoch: 0, iter: 80700, loss: 29.730871200561523
epoch: 0, iter: 80800, loss: 30.972171783447266
epoch: 0, iter: 80900, loss: 30.97983169555664
epoch: 0, iter: 81000, loss: 31.120412826538086
epoch: 0, iter: 81100, loss: 31.14563751220703
epoch: 0, iter: 81200, loss: 30.718021392822266
epoch: 0, iter: 81300, loss: 31.257009506225586
epoch: 0, iter: 81400, loss: 30.679397583007812
epoch: 0, iter: 81500, loss: 30.84437370300293
epoch: 0, iter: 81600, loss: 31.431678771972656
epoch: 0, iter: 81700, loss: 30.983497619628906
epoch: 0, iter: 81800, loss: 30.411563873291016
epoch: 0, iter: 81900, loss: 30.98554801940918
epoch: 0, iter: 82000, loss: 30.836700439453125
epoch: 0, iteration: 82000, simlex-999: SpearmanrResult(correlation=0.11957387123233242, pvalue=0.0002092803818694985), men: SpearmanrResult(correlation=0.12247627027840459, pvalue=3.979672482221647e-10), sim353: SpearmanrResult(correlation=0.16490918370598598, pvalue=0.0031840146668676477), nearest to monster: ['monster', 'blade', 'bird', 'boat', 'leg', 'legendary', 'angel', 'tail', 'signature', 'brand']
epoch: 0, iter: 82100, loss: 31.439632415771484
epoch: 0, iter: 82200, loss: 31.005916595458984
epoch: 0, iter: 82300, loss: 30.159162521362305
epoch: 0, iter: 82400, loss: 31.28647232055664
epoch: 0, iter: 82500, loss: 31.14252281188965
epoch: 0, iter: 82600, loss: 30.4515323638916
epoch: 0, iter: 82700, loss: 31.12192153930664
epoch: 0, iter: 82800, loss: 31.36789894104004
epoch: 0, iter: 82900, loss: 30.705039978027344
epoch: 0, iter: 83000, loss: 30.586198806762695
epoch: 0, iter: 83100, loss: 30.898677825927734
epoch: 0, iter: 83200, loss: 30.465381622314453
epoch: 0, iter: 83300, loss: 30.524826049804688
epoch: 0, iter: 83400, loss: 30.76988410949707
epoch: 0, iter: 83500, loss: 31.108976364135742
epoch: 0, iter: 83600, loss: 30.428987503051758
epoch: 0, iter: 83700, loss: 31.005210876464844
epoch: 0, iter: 83800, loss: 30.407583236694336
epoch: 0, iter: 83900, loss: 30.31291961669922
epoch: 0, iter: 84000, loss: 30.384244918823242
epoch: 0, iteration: 84000, simlex-999: SpearmanrResult(correlation=0.11985731732845852, pvalue=0.00020208569630055274), men: SpearmanrResult(correlation=0.12383970685303505, pvalue=2.5324734087303694e-10), sim353: SpearmanrResult(correlation=0.16816942668263687, pvalue=0.002625098004568829), nearest to monster: ['monster', 'blade', 'leg', 'angel', 'boat', 'legendary', 'bird', 'tail', 'signature', 'epic']
epoch: 0, iter: 84100, loss: 30.388629913330078
epoch: 0, iter: 84200, loss: 30.61890983581543
epoch: 0, iter: 84300, loss: 30.860755920410156
epoch: 0, iter: 84400, loss: 30.6082763671875
epoch: 0, iter: 84500, loss: 30.51343536376953
epoch: 0, iter: 84600, loss: 31.175479888916016
epoch: 0, iter: 84700, loss: 30.97124481201172
epoch: 0, iter: 84800, loss: 30.84918975830078
epoch: 0, iter: 84900, loss: 30.95672035217285
epoch: 0, iter: 85000, loss: 31.12570571899414
epoch: 0, iter: 85100, loss: 31.057252883911133
epoch: 0, iter: 85200, loss: 30.39339828491211
epoch: 0, iter: 85300, loss: 30.523571014404297
epoch: 0, iter: 85400, loss: 30.765701293945312
epoch: 0, iter: 85500, loss: 30.65972137451172
epoch: 0, iter: 85600, loss: 30.2365779876709
epoch: 0, iter: 85700, loss: 31.060688018798828
epoch: 0, iter: 85800, loss: 31.084121704101562
epoch: 0, iter: 85900, loss: 30.77812957763672
epoch: 0, iter: 86000, loss: 30.55185890197754
epoch: 0, iteration: 86000, simlex-999: SpearmanrResult(correlation=0.12072190676944367, pvalue=0.00018154682975915078), men: SpearmanrResult(correlation=0.1252523395746619, pvalue=1.577244824410371e-10), sim353: SpearmanrResult(correlation=0.1690460146471711, pvalue=0.002490881483585671), nearest to monster: ['monster', 'blade', 'leg', 'angel', 'boat', 'tail', 'bird', 'mirror', 'legendary', 'signature']
epoch: 0, iter: 86100, loss: 30.656890869140625
epoch: 0, iter: 86200, loss: 30.80274200439453
epoch: 0, iter: 86300, loss: 30.992799758911133
epoch: 0, iter: 86400, loss: 30.460365295410156
epoch: 0, iter: 86500, loss: 30.55353546142578
epoch: 0, iter: 86600, loss: 31.388164520263672
epoch: 0, iter: 86700, loss: 30.856948852539062
epoch: 0, iter: 86800, loss: 30.76443099975586
epoch: 0, iter: 86900, loss: 30.570655822753906
epoch: 0, iter: 87000, loss: 30.948423385620117
epoch: 0, iter: 87100, loss: 30.856409072875977
epoch: 0, iter: 87200, loss: 30.930587768554688
epoch: 0, iter: 87300, loss: 30.785308837890625
epoch: 0, iter: 87400, loss: 30.77594757080078
epoch: 0, iter: 87500, loss: 30.602954864501953
epoch: 0, iter: 87600, loss: 31.219999313354492
epoch: 0, iter: 87700, loss: 30.640804290771484
epoch: 0, iter: 87800, loss: 31.12940788269043
epoch: 0, iter: 87900, loss: 30.826904296875
epoch: 0, iter: 88000, loss: 30.990097045898438
epoch: 0, iteration: 88000, simlex-999: SpearmanrResult(correlation=0.12147024702674274, pvalue=0.0001653680990202469), men: SpearmanrResult(correlation=0.12604951290417668, pvalue=1.2045725972710165e-10), sim353: SpearmanrResult(correlation=0.1693454875469321, pvalue=0.002446480354677961), nearest to monster: ['monster', 'blade', 'leg', 'angel', 'bird', 'boat', 'signature', 'legendary', 'mirror', 'owner']
epoch: 0, iter: 88100, loss: 30.87779426574707
epoch: 0, iter: 88200, loss: 30.53211212158203
epoch: 0, iter: 88300, loss: 30.86421012878418
epoch: 0, iter: 88400, loss: 30.66036605834961
epoch: 0, iter: 88500, loss: 30.340608596801758
epoch: 0, iter: 88600, loss: 30.53420639038086
epoch: 0, iter: 88700, loss: 31.032270431518555
epoch: 0, iter: 88800, loss: 30.652175903320312
epoch: 0, iter: 88900, loss: 31.2420654296875
epoch: 0, iter: 89000, loss: 31.169876098632812
epoch: 0, iter: 89100, loss: 30.760807037353516
epoch: 0, iter: 89200, loss: 31.122560501098633
epoch: 0, iter: 89300, loss: 30.895538330078125
epoch: 0, iter: 89400, loss: 30.56373405456543
epoch: 0, iter: 89500, loss: 30.996185302734375
epoch: 0, iter: 89600, loss: 30.380939483642578
epoch: 0, iter: 89700, loss: 31.11984634399414
epoch: 0, iter: 89800, loss: 30.738248825073242
epoch: 0, iter: 89900, loss: 30.822444915771484
epoch: 0, iter: 90000, loss: 31.190614700317383
epoch: 0, iteration: 90000, simlex-999: SpearmanrResult(correlation=0.12146351761533054, pvalue=0.00016550735138900002), men: SpearmanrResult(correlation=0.12797080964385293, pvalue=6.246963375652522e-11), sim353: SpearmanrResult(correlation=0.1730852603381537, pvalue=0.0019495550082259915), nearest to monster: ['monster', 'blade', 'leg', 'angel', 'signature', 'bird', 'boat', 'tail', 'legendary', 'mirror']
epoch: 0, iter: 90100, loss: 31.01602554321289
epoch: 0, iter: 90200, loss: 30.99297523498535
epoch: 0, iter: 90300, loss: 31.247032165527344
epoch: 0, iter: 90400, loss: 31.122554779052734
epoch: 0, iter: 90500, loss: 30.871871948242188
epoch: 0, iter: 90600, loss: 30.537988662719727
epoch: 0, iter: 90700, loss: 30.66657066345215
epoch: 0, iter: 90800, loss: 30.967605590820312
epoch: 0, iter: 90900, loss: 30.71727180480957
epoch: 0, iter: 91000, loss: 30.835491180419922
epoch: 0, iter: 91100, loss: 30.330137252807617
epoch: 0, iter: 91200, loss: 30.791658401489258
epoch: 0, iter: 91300, loss: 31.337520599365234
epoch: 0, iter: 91400, loss: 30.702518463134766
epoch: 0, iter: 91500, loss: 30.312820434570312
epoch: 0, iter: 91600, loss: 30.737586975097656
epoch: 0, iter: 91700, loss: 30.993764877319336
epoch: 0, iter: 91800, loss: 30.754323959350586
epoch: 0, iter: 91900, loss: 30.35256004333496
epoch: 0, iter: 92000, loss: 31.06475257873535
epoch: 0, iteration: 92000, simlex-999: SpearmanrResult(correlation=0.12049492050252572, pvalue=0.00018674058599766732), men: SpearmanrResult(correlation=0.1287830873875849, pvalue=4.7187134855481034e-11), sim353: SpearmanrResult(correlation=0.17778969038281117, pvalue=0.0014557762316129456), nearest to monster: ['monster', 'leg', 'blade', 'angel', 'mirror', 'signature', 'tail', 'bird', 'boat', 'legendary']
epoch: 0, iter: 92100, loss: 30.96708869934082
epoch: 0, iter: 92200, loss: 30.94014549255371
epoch: 0, iter: 92300, loss: 30.560161590576172
epoch: 0, iter: 92400, loss: 30.880233764648438
epoch: 0, iter: 92500, loss: 30.613208770751953
epoch: 0, iter: 92600, loss: 30.25086212158203
epoch: 0, iter: 92700, loss: 30.913589477539062
epoch: 0, iter: 92800, loss: 30.727537155151367
epoch: 0, iter: 92900, loss: 30.70943832397461
epoch: 0, iter: 93000, loss: 30.733348846435547
epoch: 0, iter: 93100, loss: 31.102148056030273
epoch: 0, iter: 93200, loss: 31.044496536254883
epoch: 0, iter: 93300, loss: 30.72943115234375
epoch: 0, iter: 93400, loss: 30.99721336364746
epoch: 0, iter: 93500, loss: 30.689409255981445
epoch: 0, iter: 93600, loss: 31.005870819091797
epoch: 0, iter: 93700, loss: 30.852521896362305
epoch: 0, iter: 93800, loss: 31.096954345703125
epoch: 0, iter: 93900, loss: 30.707332611083984
epoch: 0, iter: 94000, loss: 31.069786071777344
epoch: 0, iteration: 94000, simlex-999: SpearmanrResult(correlation=0.12324490593078305, pvalue=0.0001322502794958162), men: SpearmanrResult(correlation=0.13004699883992418, pvalue=3.038858436063571e-11), sim353: SpearmanrResult(correlation=0.17592250950560948, pvalue=0.0016361090865993084), nearest to monster: ['monster', 'blade', 'leg', 'angel', 'mirror', 'tail', 'signature', 'bird', 'boat', 'legendary']
epoch: 0, iter: 94100, loss: 31.337974548339844
epoch: 0, iter: 94200, loss: 30.744091033935547
epoch: 0, iter: 94300, loss: 30.94021987915039
epoch: 0, iter: 94400, loss: 30.518966674804688
epoch: 0, iter: 94500, loss: 30.852733612060547
epoch: 0, iter: 94600, loss: 30.059051513671875
epoch: 0, iter: 94700, loss: 31.083663940429688
epoch: 0, iter: 94800, loss: 30.699934005737305
epoch: 0, iter: 94900, loss: 30.6217041015625
epoch: 0, iter: 95000, loss: 30.698474884033203
epoch: 0, iter: 95100, loss: 30.759702682495117
epoch: 0, iter: 95200, loss: 31.207561492919922
epoch: 0, iter: 95300, loss: 30.635595321655273
epoch: 0, iter: 95400, loss: 30.824134826660156
epoch: 0, iter: 95500, loss: 30.59402847290039
epoch: 0, iter: 95600, loss: 29.989118576049805
epoch: 0, iter: 95700, loss: 31.089012145996094
epoch: 0, iter: 95800, loss: 30.574230194091797
epoch: 0, iter: 95900, loss: 31.234333038330078
epoch: 0, iter: 96000, loss: 30.883787155151367
epoch: 0, iteration: 96000, simlex-999: SpearmanrResult(correlation=0.12461901598392905, pvalue=0.00011100775081614734), men: SpearmanrResult(correlation=0.13040298596867406, pvalue=2.6825511352924495e-11), sim353: SpearmanrResult(correlation=0.17773632636453598, pvalue=0.0014606662591213036), nearest to monster: ['monster', 'blade', 'angel', 'leg', 'mirror', 'bird', 'boat', 'tail', 'signature', 'harp']
epoch: 0, iter: 96100, loss: 30.677898406982422
epoch: 0, iter: 96200, loss: 30.666500091552734
epoch: 0, iter: 96300, loss: 30.890090942382812
epoch: 0, iter: 96400, loss: 30.862751007080078
epoch: 0, iter: 96500, loss: 30.74241828918457
epoch: 0, iter: 96600, loss: 31.067392349243164
epoch: 0, iter: 96700, loss: 30.09185791015625
epoch: 0, iter: 96800, loss: 30.830251693725586
epoch: 0, iter: 96900, loss: 30.507057189941406
epoch: 0, iter: 97000, loss: 30.755821228027344
epoch: 0, iter: 97100, loss: 30.22985076904297
epoch: 0, iter: 97200, loss: 30.947574615478516
epoch: 0, iter: 97300, loss: 30.583507537841797
epoch: 0, iter: 97400, loss: 30.67584991455078
epoch: 0, iter: 97500, loss: 31.08060073852539
epoch: 0, iter: 97600, loss: 30.564102172851562
epoch: 0, iter: 97700, loss: 30.59963607788086
epoch: 0, iter: 97800, loss: 31.315624237060547
epoch: 0, iter: 97900, loss: 31.017738342285156
epoch: 0, iter: 98000, loss: 30.729049682617188
epoch: 0, iteration: 98000, simlex-999: SpearmanrResult(correlation=0.1246043454563031, pvalue=0.00011121651888022881), men: SpearmanrResult(correlation=0.13216585436099, pvalue=1.4393399261301587e-11), sim353: SpearmanrResult(correlation=0.17839479356905732, pvalue=0.001401368292639592), nearest to monster: ['monster', 'blade', 'angel', 'leg', 'mirror', 'shield', 'bird', 'tail', 'boat', 'signature']
epoch: 0, iter: 98100, loss: 31.072677612304688
epoch: 0, iter: 98200, loss: 30.446178436279297
epoch: 0, iter: 98300, loss: 30.861177444458008
epoch: 0, iter: 98400, loss: 31.360382080078125
epoch: 0, iter: 98500, loss: 31.02007293701172
epoch: 0, iter: 98600, loss: 30.365102767944336
epoch: 0, iter: 98700, loss: 30.617948532104492
epoch: 0, iter: 98800, loss: 30.435665130615234
epoch: 0, iter: 98900, loss: 30.99168586730957
epoch: 0, iter: 99000, loss: 30.720821380615234
epoch: 0, iter: 99100, loss: 30.526050567626953
epoch: 0, iter: 99200, loss: 30.532978057861328
epoch: 0, iter: 99300, loss: 30.427440643310547
epoch: 0, iter: 99400, loss: 30.835657119750977
epoch: 0, iter: 99500, loss: 30.73276138305664
epoch: 0, iter: 99600, loss: 30.321819305419922
epoch: 0, iter: 99700, loss: 30.551624298095703
epoch: 0, iter: 99800, loss: 30.387161254882812
epoch: 0, iter: 99900, loss: 30.957223892211914
epoch: 0, iter: 100000, loss: 30.369234085083008
epoch: 0, iteration: 100000, simlex-999: SpearmanrResult(correlation=0.12513772832585443, pvalue=0.00010385909688140838), men: SpearmanrResult(correlation=0.13298891292774756, pvalue=1.0732164702661443e-11), sim353: SpearmanrResult(correlation=0.18029779924174447, pvalue=0.0012421912502034132), nearest to monster: ['monster', 'blade', 'angel', 'leg', 'bird', 'boat', 'mirror', 'wheel', 'shield', 'tail']
epoch: 0, iter: 100100, loss: 30.41366958618164
epoch: 0, iter: 100200, loss: 30.84021759033203
epoch: 0, iter: 100300, loss: 30.72504234313965
epoch: 0, iter: 100400, loss: 30.86883544921875
epoch: 0, iter: 100500, loss: 30.47562026977539
epoch: 0, iter: 100600, loss: 30.675384521484375
epoch: 0, iter: 100700, loss: 30.502666473388672
epoch: 0, iter: 100800, loss: 30.754810333251953
epoch: 0, iter: 100900, loss: 30.797780990600586
epoch: 0, iter: 101000, loss: 30.811765670776367
epoch: 0, iter: 101100, loss: 30.670616149902344
epoch: 0, iter: 101200, loss: 30.43963050842285
epoch: 0, iter: 101300, loss: 30.744415283203125
epoch: 0, iter: 101400, loss: 30.76150894165039
epoch: 0, iter: 101500, loss: 30.75295066833496
epoch: 0, iter: 101600, loss: 30.873519897460938
epoch: 0, iter: 101700, loss: 30.82119369506836
epoch: 0, iter: 101800, loss: 30.61273193359375
epoch: 0, iter: 101900, loss: 30.886390686035156
epoch: 0, iter: 102000, loss: 30.50117301940918
epoch: 0, iteration: 102000, simlex-999: SpearmanrResult(correlation=0.12658345688637404, pvalue=8.615546339741256e-05), men: SpearmanrResult(correlation=0.13482600193860372, pvalue=5.5374783924142395e-12), sim353: SpearmanrResult(correlation=0.18156136963251196, pvalue=0.0011458677738041929), nearest to monster: ['monster', 'blade', 'angel', 'leg', 'boat', 'shield', 'mirror', 'bird', 'wheel', 'harp']
epoch: 0, iter: 102100, loss: 31.035795211791992
epoch: 0, iter: 102200, loss: 30.630266189575195
epoch: 0, iter: 102300, loss: 30.40416717529297
epoch: 0, iter: 102400, loss: 30.68378448486328
epoch: 0, iter: 102500, loss: 30.96162986755371
epoch: 0, iter: 102600, loss: 30.965835571289062
epoch: 0, iter: 102700, loss: 30.67343521118164
epoch: 0, iter: 102800, loss: 30.438232421875
epoch: 0, iter: 102900, loss: 30.58956527709961
epoch: 0, iter: 103000, loss: 30.720691680908203
epoch: 0, iter: 103100, loss: 31.140766143798828
epoch: 0, iter: 103200, loss: 30.85077667236328
epoch: 0, iter: 103300, loss: 30.857940673828125
epoch: 0, iter: 103400, loss: 30.87981414794922
epoch: 0, iter: 103500, loss: 30.996490478515625
epoch: 0, iter: 103600, loss: 30.80972671508789
epoch: 0, iter: 103700, loss: 30.426483154296875
epoch: 0, iter: 103800, loss: 30.21402931213379
epoch: 0, iter: 103900, loss: 30.624500274658203
epoch: 0, iter: 104000, loss: 30.79989242553711
epoch: 0, iteration: 104000, simlex-999: SpearmanrResult(correlation=0.12685808215829938, pvalue=8.313188130474721e-05), men: SpearmanrResult(correlation=0.13579942549332547, pvalue=3.885480680746222e-12), sim353: SpearmanrResult(correlation=0.18599692712355217, pvalue=0.0008595570664566224), nearest to monster: ['monster', 'blade', 'angel', 'leg', 'camera', 'shield', 'boat', 'mirror', 'harp', 'elephant']
epoch: 0, iter: 104100, loss: 30.856924057006836
epoch: 0, iter: 104200, loss: 30.86968994140625
epoch: 0, iter: 104300, loss: 31.017091751098633
epoch: 0, iter: 104400, loss: 31.06365394592285
epoch: 0, iter: 104500, loss: 31.071155548095703
epoch: 0, iter: 104600, loss: 31.20572280883789
epoch: 0, iter: 104700, loss: 30.488605499267578
epoch: 0, iter: 104800, loss: 30.928695678710938
epoch: 0, iter: 104900, loss: 30.158926010131836
epoch: 0, iter: 105000, loss: 30.583736419677734
epoch: 0, iter: 105100, loss: 30.513572692871094
epoch: 0, iter: 105200, loss: 30.47650718688965
epoch: 0, iter: 105300, loss: 30.839195251464844
epoch: 0, iter: 105400, loss: 30.879192352294922
epoch: 0, iter: 105500, loss: 30.75198745727539
epoch: 0, iter: 105600, loss: 30.641521453857422
epoch: 0, iter: 105700, loss: 30.412517547607422
epoch: 0, iter: 105800, loss: 30.99948501586914
epoch: 0, iter: 105900, loss: 30.492664337158203
epoch: 0, iter: 106000, loss: 30.717350006103516
epoch: 0, iteration: 106000, simlex-999: SpearmanrResult(correlation=0.12920315538833363, pvalue=6.109467641248834e-05), men: SpearmanrResult(correlation=0.13611945131945707, pvalue=3.4563464313462454e-12), sim353: SpearmanrResult(correlation=0.18889686968310743, pvalue=0.0007097623503415265), nearest to monster: ['monster', 'blade', 'leg', 'angel', 'shield', 'camera', 'mirror', 'elephant', 'tube', 'boat']
epoch: 0, iter: 106100, loss: 31.023670196533203
epoch: 0, iter: 106200, loss: 30.297914505004883
epoch: 0, iter: 106300, loss: 30.34014320373535
epoch: 0, iter: 106400, loss: 30.92735481262207
epoch: 0, iter: 106500, loss: 31.24557113647461
epoch: 0, iter: 106600, loss: 30.648012161254883
epoch: 0, iter: 106700, loss: 30.329431533813477
epoch: 0, iter: 106800, loss: 30.593647003173828
epoch: 0, iter: 106900, loss: 30.407344818115234
epoch: 0, iter: 107000, loss: 30.82100486755371
epoch: 0, iter: 107100, loss: 30.74463653564453
epoch: 0, iter: 107200, loss: 30.87047576904297
epoch: 0, iter: 107300, loss: 30.84787940979004
epoch: 0, iter: 107400, loss: 30.763612747192383
epoch: 0, iter: 107500, loss: 30.8703670501709
epoch: 0, iter: 107600, loss: 30.84850311279297
epoch: 0, iter: 107700, loss: 30.902305603027344
epoch: 0, iter: 107800, loss: 30.58749771118164
epoch: 0, iter: 107900, loss: 30.673856735229492
epoch: 0, iter: 108000, loss: 30.83418846130371
epoch: 0, iteration: 108000, simlex-999: SpearmanrResult(correlation=0.13051674310394015, pvalue=5.129496444866806e-05), men: SpearmanrResult(correlation=0.1375467936587797, pvalue=2.0439266128547674e-12), sim353: SpearmanrResult(correlation=0.19379982880274665, pvalue=0.0005102019337649919), nearest to monster: ['monster', 'blade', 'leg', 'camera', 'shield', 'angel', 'elephant', 'mirror', 'ghost', 'boat']
epoch: 0, iter: 108100, loss: 31.052444458007812
epoch: 0, iter: 108200, loss: 30.354251861572266
epoch: 0, iter: 108300, loss: 31.330671310424805
epoch: 0, iter: 108400, loss: 30.84612274169922
epoch: 0, iter: 108500, loss: 30.641740798950195
epoch: 0, iter: 108600, loss: 30.20119857788086
epoch: 0, iter: 108700, loss: 30.793170928955078
epoch: 0, iter: 108800, loss: 30.220489501953125
epoch: 0, iter: 108900, loss: 30.999284744262695
epoch: 0, iter: 109000, loss: 31.053329467773438
epoch: 0, iter: 109100, loss: 30.955081939697266
epoch: 0, iter: 109200, loss: 30.715665817260742
epoch: 0, iter: 109300, loss: 30.646869659423828
epoch: 0, iter: 109400, loss: 30.617048263549805
epoch: 0, iter: 109500, loss: 31.204490661621094
epoch: 0, iter: 109600, loss: 30.811479568481445
epoch: 0, iter: 109700, loss: 30.87088394165039
epoch: 0, iter: 109800, loss: 30.969287872314453
epoch: 0, iter: 109900, loss: 30.64400291442871
epoch: 0, iter: 110000, loss: 30.75538444519043
epoch: 0, iteration: 110000, simlex-999: SpearmanrResult(correlation=0.13088839031890218, pvalue=4.880473123942339e-05), men: SpearmanrResult(correlation=0.13896681910256206, pvalue=1.2053636316763994e-12), sim353: SpearmanrResult(correlation=0.20021881116883977, pvalue=0.0003271445558931211), nearest to monster: ['monster', 'blade', 'camera', 'leg', 'shield', 'elephant', 'tube', 'mirror', 'angel', 'harp']
epoch: 0, iter: 110100, loss: 30.84221076965332
epoch: 0, iter: 110200, loss: 30.212867736816406
epoch: 0, iter: 110300, loss: 30.807170867919922
epoch: 0, iter: 110400, loss: 30.793251037597656
epoch: 0, iter: 110500, loss: 30.331619262695312
epoch: 0, iter: 110600, loss: 31.10693359375
epoch: 0, iter: 110700, loss: 30.852031707763672
epoch: 0, iter: 110800, loss: 30.546293258666992
epoch: 0, iter: 110900, loss: 30.63283920288086
epoch: 0, iter: 111000, loss: 30.74249839782715
epoch: 0, iter: 111100, loss: 30.533628463745117
epoch: 0, iter: 111200, loss: 30.584836959838867
epoch: 0, iter: 111300, loss: 31.051198959350586
epoch: 0, iter: 111400, loss: 30.349002838134766
epoch: 0, iter: 111500, loss: 31.08504295349121
epoch: 0, iter: 111600, loss: 30.422914505004883
epoch: 0, iter: 111700, loss: 30.63071632385254
epoch: 0, iter: 111800, loss: 30.566604614257812
epoch: 0, iter: 111900, loss: 30.24704360961914
epoch: 0, iter: 112000, loss: 30.796680450439453
epoch: 0, iteration: 112000, simlex-999: SpearmanrResult(correlation=0.13249184544404854, pvalue=3.931449417827171e-05), men: SpearmanrResult(correlation=0.13926854062627636, pvalue=1.0766712070412453e-12), sim353: SpearmanrResult(correlation=0.20095993662544465, pvalue=0.00031050339150380995), nearest to monster: ['monster', 'blade', 'camera', 'tube', 'leg', 'shield', 'boat', 'belt', 'elephant', 'mirror']
epoch: 0, iter: 112100, loss: 30.549213409423828
epoch: 0, iter: 112200, loss: 30.482145309448242
epoch: 0, iter: 112300, loss: 30.55345344543457
epoch: 0, iter: 112400, loss: 30.55514907836914
epoch: 0, iter: 112500, loss: 31.361774444580078
epoch: 0, iter: 112600, loss: 30.88861083984375
epoch: 0, iter: 112700, loss: 30.742958068847656
epoch: 0, iter: 112800, loss: 30.31718635559082
epoch: 0, iter: 112900, loss: 30.65258026123047
epoch: 0, iter: 113000, loss: 30.942604064941406
epoch: 0, iter: 113100, loss: 30.787303924560547
epoch: 0, iter: 113200, loss: 30.986019134521484
epoch: 0, iter: 113300, loss: 30.715797424316406
epoch: 0, iter: 113400, loss: 31.07750701904297
epoch: 0, iter: 113500, loss: 30.899442672729492
epoch: 0, iter: 113600, loss: 30.954410552978516
epoch: 0, iter: 113700, loss: 30.243022918701172
epoch: 0, iter: 113800, loss: 30.855615615844727
epoch: 0, iter: 113900, loss: 31.091819763183594
epoch: 0, iter: 114000, loss: 30.61470603942871
epoch: 0, iteration: 114000, simlex-999: SpearmanrResult(correlation=0.1336421747742616, pvalue=3.3613887168809165e-05), men: SpearmanrResult(correlation=0.14026092296561493, pvalue=7.413973866366574e-13), sim353: SpearmanrResult(correlation=0.1998161553945816, pvalue=0.00033653037818287643), nearest to monster: ['monster', 'blade', 'camera', 'tube', 'shield', 'belt', 'harp', 'leg', 'robot', 'elephant']
epoch: 0, iter: 114100, loss: 31.07042121887207
epoch: 0, iter: 114200, loss: 30.676921844482422
epoch: 0, iter: 114300, loss: 30.714401245117188
epoch: 0, iter: 114400, loss: 30.74327850341797
epoch: 0, iter: 114500, loss: 30.866933822631836
epoch: 0, iter: 114600, loss: 30.79370880126953
epoch: 0, iter: 114700, loss: 30.732254028320312
epoch: 0, iter: 114800, loss: 30.914697647094727
epoch: 0, iter: 114900, loss: 29.94063949584961
epoch: 0, iter: 115000, loss: 31.382705688476562
epoch: 0, iter: 115100, loss: 30.673114776611328
epoch: 0, iter: 115200, loss: 30.157482147216797
epoch: 0, iter: 115300, loss: 30.431161880493164
epoch: 0, iter: 115400, loss: 30.79012680053711
epoch: 0, iter: 115500, loss: 30.708446502685547
epoch: 0, iter: 115600, loss: 30.697505950927734
epoch: 0, iter: 115700, loss: 30.43924331665039
epoch: 0, iter: 115800, loss: 30.20172119140625
epoch: 0, iter: 115900, loss: 30.414777755737305
epoch: 0, iter: 116000, loss: 30.588607788085938
epoch: 0, iteration: 116000, simlex-999: SpearmanrResult(correlation=0.13466175544946068, pvalue=2.922495994353612e-05), men: SpearmanrResult(correlation=0.1408288689686598, pvalue=5.981353363565132e-13), sim353: SpearmanrResult(correlation=0.20141259784340124, pvalue=0.0003007309889417829), nearest to monster: ['monster', 'blade', 'camera', 'tube', 'harp', 'shield', 'belt', 'wheel', 'elephant', 'robot']
epoch: 0, iter: 116100, loss: 31.112529754638672
epoch: 0, iter: 116200, loss: 30.93574333190918
epoch: 0, iter: 116300, loss: 30.862598419189453
epoch: 0, iter: 116400, loss: 30.959362030029297
epoch: 0, iter: 116500, loss: 30.90961456298828
epoch: 0, iter: 116600, loss: 30.95020294189453
epoch: 0, iter: 116700, loss: 30.564823150634766
epoch: 0, iter: 116800, loss: 31.208728790283203
epoch: 0, iter: 116900, loss: 30.43271255493164
epoch: 0, iter: 117000, loss: 30.27477264404297
epoch: 0, iter: 117100, loss: 31.123092651367188
epoch: 0, iter: 117200, loss: 30.779741287231445
epoch: 0, iter: 117300, loss: 30.509449005126953
epoch: 0, iter: 117400, loss: 30.905853271484375
epoch: 0, iter: 117500, loss: 30.46228790283203
epoch: 0, iter: 117600, loss: 30.66716766357422
epoch: 0, iter: 117700, loss: 30.286834716796875
epoch: 0, iter: 117800, loss: 30.221879959106445
epoch: 0, iter: 117900, loss: 30.67200469970703
epoch: 0, iter: 118000, loss: 30.90604019165039
epoch: 0, iteration: 118000, simlex-999: SpearmanrResult(correlation=0.13486929926002347, pvalue=2.8400848845646733e-05), men: SpearmanrResult(correlation=0.14109607175728955, pvalue=5.405006472637779e-13), sim353: SpearmanrResult(correlation=0.20408826225621957, pvalue=0.00024858062563288326), nearest to monster: ['monster', 'blade', 'camera', 'tube', 'harp', 'module', 'robot', 'elephant', 'mirror', 'wheel']
epoch: 0, iter: 118100, loss: 31.184240341186523
epoch: 0, iter: 118200, loss: 29.67246437072754
epoch: 0, iter: 118300, loss: 30.052947998046875
epoch: 0, iter: 118400, loss: 30.136735916137695
epoch: 0, iter: 118500, loss: 31.110488891601562
epoch: 0, iter: 118600, loss: 30.923221588134766
epoch: 0, iter: 118700, loss: 30.17416763305664
epoch: 0, iter: 118800, loss: 30.757675170898438
epoch: 0, iter: 118900, loss: 30.749191284179688
epoch: 0, iter: 119000, loss: 30.639251708984375
epoch: 0, iter: 119100, loss: 30.50901985168457
epoch: 0, iter: 119200, loss: 30.917224884033203
epoch: 0, iter: 119300, loss: 30.909788131713867
epoch: 0, iter: 119400, loss: 30.55084228515625
epoch: 0, iter: 119500, loss: 30.522607803344727
epoch: 1, iter: 0, loss: 30.452777862548828
epoch: 1, iteration: 0, simlex-999: SpearmanrResult(correlation=0.13584630300275116, pvalue=2.480900559909309e-05), men: SpearmanrResult(correlation=0.14149671571670952, pvalue=4.641524444417543e-13), sim353: SpearmanrResult(correlation=0.20420525260397665, pvalue=0.00024650552323513203), nearest to monster: ['monster', 'blade', 'camera', 'robot', 'leg', 'module', 'harp', 'mirror', 'boat', 'elephant']
epoch: 1, iter: 100, loss: 30.471439361572266
epoch: 1, iter: 200, loss: 30.330595016479492
epoch: 1, iter: 300, loss: 30.57529067993164
epoch: 1, iter: 400, loss: 30.718156814575195
epoch: 1, iter: 500, loss: 30.709121704101562
epoch: 1, iter: 600, loss: 30.22405242919922
epoch: 1, iter: 700, loss: 31.00029945373535
epoch: 1, iter: 800, loss: 30.500652313232422
epoch: 1, iter: 900, loss: 30.64475440979004
epoch: 1, iter: 1000, loss: 30.245718002319336
epoch: 1, iter: 1100, loss: 30.46042251586914
epoch: 1, iter: 1200, loss: 30.88376235961914
epoch: 1, iter: 1300, loss: 30.545751571655273
epoch: 1, iter: 1400, loss: 30.541282653808594
epoch: 1, iter: 1500, loss: 30.788883209228516
epoch: 1, iter: 1600, loss: 30.412235260009766
epoch: 1, iter: 1700, loss: 30.570415496826172
epoch: 1, iter: 1800, loss: 30.742263793945312
epoch: 1, iter: 1900, loss: 30.20556640625
epoch: 1, iter: 2000, loss: 30.579498291015625
epoch: 1, iteration: 2000, simlex-999: SpearmanrResult(correlation=0.13750886561871162, pvalue=1.9667970854520583e-05), men: SpearmanrResult(correlation=0.14216903853907206, pvalue=3.5913225784003253e-13), sim353: SpearmanrResult(correlation=0.20737145549247832, pvalue=0.00019612168069552233), nearest to monster: ['monster', 'blade', 'camera', 'module', 'robot', 'boat', 'leg', 'elephant', 'harp', 'pen']
epoch: 1, iter: 2100, loss: 31.068511962890625
epoch: 1, iter: 2200, loss: 30.329666137695312
epoch: 1, iter: 2300, loss: 30.718788146972656
epoch: 1, iter: 2400, loss: 30.20919418334961
epoch: 1, iter: 2500, loss: 30.841068267822266
epoch: 1, iter: 2600, loss: 30.234155654907227
epoch: 1, iter: 2700, loss: 30.538684844970703
epoch: 1, iter: 2800, loss: 30.410411834716797
epoch: 1, iter: 2900, loss: 30.57469940185547
epoch: 1, iter: 3000, loss: 30.982160568237305
epoch: 1, iter: 3100, loss: 30.552490234375
epoch: 1, iter: 3200, loss: 30.447053909301758
epoch: 1, iter: 3300, loss: 30.97784996032715
epoch: 1, iter: 3400, loss: 30.28424072265625
epoch: 1, iter: 3500, loss: 30.430091857910156
epoch: 1, iter: 3600, loss: 30.772613525390625
epoch: 1, iter: 3700, loss: 30.817935943603516
epoch: 1, iter: 3800, loss: 31.377342224121094
epoch: 1, iter: 3900, loss: 30.153400421142578
epoch: 1, iter: 4000, loss: 30.621929168701172
epoch: 1, iteration: 4000, simlex-999: SpearmanrResult(correlation=0.13830312006033485, pvalue=1.7586105251314907e-05), men: SpearmanrResult(correlation=0.14305092230879102, pvalue=2.5604571360787646e-13), sim353: SpearmanrResult(correlation=0.21378372070941798, pvalue=0.0001221329627483309), nearest to monster: ['monster', 'blade', 'camera', 'leg', 'robot', 'boat', 'mirror', 'module', 'harp', 'elephant']
epoch: 1, iter: 4100, loss: 30.806547164916992
epoch: 1, iter: 4200, loss: 30.223846435546875
epoch: 1, iter: 4300, loss: 30.79652214050293
epoch: 1, iter: 4400, loss: 30.826208114624023
epoch: 1, iter: 4500, loss: 30.39246940612793
epoch: 1, iter: 4600, loss: 30.316673278808594
epoch: 1, iter: 4700, loss: 30.22970962524414
epoch: 1, iter: 4800, loss: 30.382505416870117
epoch: 1, iter: 4900, loss: 30.906177520751953
epoch: 1, iter: 5000, loss: 30.31850814819336
epoch: 1, iter: 5100, loss: 30.42485809326172
epoch: 1, iter: 5200, loss: 30.402118682861328
epoch: 1, iter: 5300, loss: 30.640960693359375
epoch: 1, iter: 5400, loss: 30.709318161010742
epoch: 1, iter: 5500, loss: 30.756460189819336
epoch: 1, iter: 5600, loss: 30.85149574279785
epoch: 1, iter: 5700, loss: 30.148801803588867
epoch: 1, iter: 5800, loss: 30.126773834228516
epoch: 1, iter: 5900, loss: 29.931812286376953
epoch: 1, iter: 6000, loss: 30.726451873779297
epoch: 1, iteration: 6000, simlex-999: SpearmanrResult(correlation=0.13881144733907377, pvalue=1.6365610755549817e-05), men: SpearmanrResult(correlation=0.14301940225728388, pvalue=2.5917019394881986e-13), sim353: SpearmanrResult(correlation=0.21994801117010684, pvalue=7.642841580302375e-05), nearest to monster: ['monster', 'blade', 'camera', 'robot', 'harp', 'bird', 'boat', 'leg', 'module', 'elephant']
epoch: 1, iter: 6100, loss: 30.620433807373047
epoch: 1, iter: 6200, loss: 30.196815490722656
epoch: 1, iter: 6300, loss: 30.643386840820312
epoch: 1, iter: 6400, loss: 30.523494720458984
epoch: 1, iter: 6500, loss: 30.796640396118164
epoch: 1, iter: 6600, loss: 31.071800231933594
epoch: 1, iter: 6700, loss: 30.77219009399414
epoch: 1, iter: 6800, loss: 30.722896575927734
epoch: 1, iter: 6900, loss: 30.279769897460938
epoch: 1, iter: 7000, loss: 30.445314407348633
epoch: 1, iter: 7100, loss: 30.531850814819336
epoch: 1, iter: 7200, loss: 30.295429229736328
epoch: 1, iter: 7300, loss: 30.24776840209961
epoch: 1, iter: 7400, loss: 30.302000045776367
epoch: 1, iter: 7500, loss: 30.31418800354004
epoch: 1, iter: 7600, loss: 30.70012664794922
epoch: 1, iter: 7700, loss: 30.701053619384766
epoch: 1, iter: 7800, loss: 30.10363006591797
epoch: 1, iter: 7900, loss: 30.491683959960938
epoch: 1, iter: 8000, loss: 30.433917999267578
epoch: 1, iteration: 8000, simlex-999: SpearmanrResult(correlation=0.13980285510214574, pvalue=1.4213297877880229e-05), men: SpearmanrResult(correlation=0.143487017095893, pvalue=2.1643054711694094e-13), sim353: SpearmanrResult(correlation=0.22035570480623015, pvalue=7.40606141206957e-05), nearest to monster: ['monster', 'blade', 'robot', 'camera', 'bird', 'elephant', 'module', 'mine', 'harp', 'boat']
epoch: 1, iter: 8100, loss: 30.638187408447266
epoch: 1, iter: 8200, loss: 30.01629638671875
epoch: 1, iter: 8300, loss: 30.81504249572754
epoch: 1, iter: 8400, loss: 30.378347396850586
epoch: 1, iter: 8500, loss: 30.630828857421875
epoch: 1, iter: 8600, loss: 30.271350860595703
epoch: 1, iter: 8700, loss: 30.721881866455078
epoch: 1, iter: 8800, loss: 30.455726623535156
epoch: 1, iter: 8900, loss: 31.070642471313477
epoch: 1, iter: 9000, loss: 30.86322593688965
epoch: 1, iter: 9100, loss: 30.664705276489258
epoch: 1, iter: 9200, loss: 30.42993927001953
epoch: 1, iter: 9300, loss: 31.07258415222168
epoch: 1, iter: 9400, loss: 30.924095153808594
epoch: 1, iter: 9500, loss: 30.60555076599121
epoch: 1, iter: 9600, loss: 30.54239845275879
epoch: 1, iter: 9700, loss: 30.296348571777344
epoch: 1, iter: 9800, loss: 30.616439819335938
epoch: 1, iter: 9900, loss: 30.72933578491211
epoch: 1, iter: 10000, loss: 30.84246253967285
epoch: 1, iteration: 10000, simlex-999: SpearmanrResult(correlation=0.13918559761336866, pvalue=1.5519239995073766e-05), men: SpearmanrResult(correlation=0.14349097227167568, pvalue=2.1610034817411894e-13), sim353: SpearmanrResult(correlation=0.22154967806826809, pvalue=6.751724609450489e-05), nearest to monster: ['monster', 'blade', 'bird', 'camera', 'robot', 'elephant', 'mine', 'module', 'leg', 'harp']
epoch: 1, iter: 10100, loss: 30.592771530151367
epoch: 1, iter: 10200, loss: 30.892162322998047
epoch: 1, iter: 10300, loss: 31.060081481933594
epoch: 1, iter: 10400, loss: 30.355026245117188
epoch: 1, iter: 10500, loss: 30.683738708496094
epoch: 1, iter: 10600, loss: 30.789752960205078
epoch: 1, iter: 10700, loss: 30.287927627563477
epoch: 1, iter: 10800, loss: 30.678464889526367
epoch: 1, iter: 10900, loss: 30.326526641845703
epoch: 1, iter: 11000, loss: 30.644237518310547
epoch: 1, iter: 11100, loss: 30.537033081054688
epoch: 1, iter: 11200, loss: 30.29986572265625
epoch: 1, iter: 11300, loss: 30.58269500732422
epoch: 1, iter: 11400, loss: 30.60637664794922
epoch: 1, iter: 11500, loss: 30.54550552368164
epoch: 1, iter: 11600, loss: 30.504114151000977
epoch: 1, iter: 11700, loss: 30.25569725036621
epoch: 1, iter: 11800, loss: 30.455440521240234
epoch: 1, iter: 11900, loss: 30.485092163085938
epoch: 1, iter: 12000, loss: 30.729618072509766
epoch: 1, iteration: 12000, simlex-999: SpearmanrResult(correlation=0.14006879986730683, pvalue=1.3683503449346063e-05), men: SpearmanrResult(correlation=0.14369428471253842, pvalue=1.9977679774445803e-13), sim353: SpearmanrResult(correlation=0.22291381910886188, pvalue=6.0708601908239216e-05), nearest to monster: ['monster', 'blade', 'bird', 'robot', 'camera', 'boat', 'harp', 'mine', 'module', 'elephant']
epoch: 1, iter: 12100, loss: 31.003379821777344
epoch: 1, iter: 12200, loss: 30.895633697509766
epoch: 1, iter: 12300, loss: 30.73479461669922
epoch: 1, iter: 12400, loss: 30.40711212158203
epoch: 1, iter: 12500, loss: 30.21118927001953
epoch: 1, iter: 12600, loss: 30.281837463378906
epoch: 1, iter: 12700, loss: 30.417930603027344
epoch: 1, iter: 12800, loss: 29.946765899658203
epoch: 1, iter: 12900, loss: 30.75798797607422
epoch: 1, iter: 13000, loss: 31.17790985107422
epoch: 1, iter: 13100, loss: 30.745189666748047
epoch: 1, iter: 13200, loss: 30.8111572265625
epoch: 1, iter: 13300, loss: 30.84844207763672
epoch: 1, iter: 13400, loss: 30.430782318115234
epoch: 1, iter: 13500, loss: 30.365447998046875
epoch: 1, iter: 13600, loss: 30.273536682128906
epoch: 1, iter: 13700, loss: 30.858108520507812
epoch: 1, iter: 13800, loss: 30.77298927307129
epoch: 1, iter: 13900, loss: 31.031143188476562
epoch: 1, iter: 14000, loss: 30.615827560424805
epoch: 1, iteration: 14000, simlex-999: SpearmanrResult(correlation=0.1403276597185061, pvalue=1.3185922971315998e-05), men: SpearmanrResult(correlation=0.14529215462232734, pvalue=1.0734198813575383e-13), sim353: SpearmanrResult(correlation=0.22418410664878283, pvalue=5.495482632416603e-05), nearest to monster: ['monster', 'blade', 'bird', 'boat', 'robot', 'mine', 'module', 'camera', 'giant', 'harp']
epoch: 1, iter: 14100, loss: 30.48816680908203
epoch: 1, iter: 14200, loss: 30.806354522705078
epoch: 1, iter: 14300, loss: 29.96129035949707
epoch: 1, iter: 14400, loss: 30.932781219482422
epoch: 1, iter: 14500, loss: 30.7196102142334
epoch: 1, iter: 14600, loss: 30.22078514099121
epoch: 1, iter: 14700, loss: 31.128929138183594
epoch: 1, iter: 14800, loss: 29.683853149414062
epoch: 1, iter: 14900, loss: 30.984813690185547
epoch: 1, iter: 15000, loss: 30.461803436279297
epoch: 1, iter: 15100, loss: 30.73785400390625
epoch: 1, iter: 15200, loss: 30.712100982666016
epoch: 1, iter: 15300, loss: 30.466516494750977
epoch: 1, iter: 15400, loss: 30.314067840576172
epoch: 1, iter: 15500, loss: 30.55801773071289
epoch: 1, iter: 15600, loss: 30.428577423095703
epoch: 1, iter: 15700, loss: 31.00663185119629
epoch: 1, iter: 15800, loss: 30.276063919067383
epoch: 1, iter: 15900, loss: 30.50764274597168
epoch: 1, iter: 16000, loss: 30.646820068359375
epoch: 1, iteration: 16000, simlex-999: SpearmanrResult(correlation=0.13965840845801117, pvalue=1.4509180896993527e-05), men: SpearmanrResult(correlation=0.14605203149208384, pvalue=7.969295632331052e-14), sim353: SpearmanrResult(correlation=0.22762533947762578, pvalue=4.1841877221568024e-05), nearest to monster: ['monster', 'blade', 'robot', 'bird', 'boat', 'camera', 'mine', 'harp', 'pen', 'module']
epoch: 1, iter: 16100, loss: 30.518444061279297
epoch: 1, iter: 16200, loss: 30.669857025146484
epoch: 1, iter: 16300, loss: 30.55596351623535
epoch: 1, iter: 16400, loss: 30.038494110107422
epoch: 1, iter: 16500, loss: 30.565519332885742
epoch: 1, iter: 16600, loss: 30.724658966064453
epoch: 1, iter: 16700, loss: 30.56858253479004
epoch: 1, iter: 16800, loss: 30.65789031982422
epoch: 1, iter: 16900, loss: 30.921201705932617
epoch: 1, iter: 17000, loss: 30.809478759765625
epoch: 1, iter: 17100, loss: 30.42205238342285
epoch: 1, iter: 17200, loss: 30.399263381958008
epoch: 1, iter: 17300, loss: 31.051158905029297
epoch: 1, iter: 17400, loss: 30.570343017578125
epoch: 1, iter: 17500, loss: 30.416711807250977
epoch: 1, iter: 17600, loss: 30.80805778503418
epoch: 1, iter: 17700, loss: 30.25259780883789
epoch: 1, iter: 17800, loss: 30.286285400390625
epoch: 1, iter: 17900, loss: 30.53017807006836
epoch: 1, iter: 18000, loss: 30.383750915527344
epoch: 1, iteration: 18000, simlex-999: SpearmanrResult(correlation=0.1394123296964421, pvalue=1.5026797423339371e-05), men: SpearmanrResult(correlation=0.14637243756010673, pvalue=7.025458630976344e-14), sim353: SpearmanrResult(correlation=0.22732157506590558, pvalue=4.2868219856181685e-05), nearest to monster: ['monster', 'blade', 'camera', 'robot', 'bird', 'harp', 'boat', 'mine', 'pen', 'triangle']
epoch: 1, iter: 18100, loss: 30.563156127929688
epoch: 1, iter: 18200, loss: 30.877361297607422
epoch: 1, iter: 18300, loss: 30.779144287109375
epoch: 1, iter: 18400, loss: 30.79215431213379
epoch: 1, iter: 18500, loss: 30.42022705078125
epoch: 1, iter: 18600, loss: 31.03143310546875
epoch: 1, iter: 18700, loss: 31.016183853149414
epoch: 1, iter: 18800, loss: 31.11318016052246
epoch: 1, iter: 18900, loss: 30.872020721435547
epoch: 1, iter: 19000, loss: 30.474287033081055
epoch: 1, iter: 19100, loss: 31.39320945739746
epoch: 1, iter: 19200, loss: 31.03207015991211
epoch: 1, iter: 19300, loss: 30.487464904785156
epoch: 1, iter: 19400, loss: 30.420028686523438
epoch: 1, iter: 19500, loss: 30.75209617614746
epoch: 1, iter: 19600, loss: 29.88393783569336
epoch: 1, iter: 19700, loss: 30.5760440826416
epoch: 1, iter: 19800, loss: 30.56399917602539
epoch: 1, iter: 19900, loss: 30.256702423095703
epoch: 1, iter: 20000, loss: 30.273393630981445
epoch: 1, iteration: 20000, simlex-999: SpearmanrResult(correlation=0.14223311686242013, pvalue=1.0018980772884857e-05), men: SpearmanrResult(correlation=0.14753960651141446, pvalue=4.428169020670323e-14), sim353: SpearmanrResult(correlation=0.22932179281384227, pvalue=3.652359446164985e-05), nearest to monster: ['monster', 'blade', 'bird', 'robot', 'mine', 'harp', 'boat', 'triangle', 'camera', 'giant']
epoch: 1, iter: 20100, loss: 30.554931640625
epoch: 1, iter: 20200, loss: 30.8705997467041
epoch: 1, iter: 20300, loss: 30.918720245361328
epoch: 1, iter: 20400, loss: 30.68167495727539
epoch: 1, iter: 20500, loss: 30.421613693237305
epoch: 1, iter: 20600, loss: 30.65481948852539
epoch: 1, iter: 20700, loss: 30.48784828186035
epoch: 1, iter: 20800, loss: 30.522476196289062
epoch: 1, iter: 20900, loss: 30.651445388793945
epoch: 1, iter: 21000, loss: 30.873241424560547
epoch: 1, iter: 21100, loss: 30.824703216552734
epoch: 1, iter: 21200, loss: 30.80352783203125
epoch: 1, iter: 21300, loss: 31.21027183532715
epoch: 1, iter: 21400, loss: 30.860301971435547
epoch: 1, iter: 21500, loss: 30.478717803955078
epoch: 1, iter: 21600, loss: 30.538753509521484
epoch: 1, iter: 21700, loss: 31.42760467529297
epoch: 1, iter: 21800, loss: 31.005023956298828
epoch: 1, iter: 21900, loss: 30.42320442199707
epoch: 1, iter: 22000, loss: 30.21063232421875
epoch: 1, iteration: 22000, simlex-999: SpearmanrResult(correlation=0.1428147967792888, pvalue=9.206660938754159e-06), men: SpearmanrResult(correlation=0.14807291207730797, pvalue=3.5817711226237477e-14), sim353: SpearmanrResult(correlation=0.22970919127508704, pvalue=3.5402130162864466e-05), nearest to monster: ['monster', 'blade', 'bird', 'mine', 'robot', 'giant', 'boat', 'harp', 'camera', 'pen']
epoch: 1, iter: 22100, loss: 30.796628952026367
epoch: 1, iter: 22200, loss: 30.456802368164062
epoch: 1, iter: 22300, loss: 30.246700286865234
epoch: 1, iter: 22400, loss: 30.443458557128906
epoch: 1, iter: 22500, loss: 30.49130630493164
epoch: 1, iter: 22600, loss: 30.463035583496094
epoch: 1, iter: 22700, loss: 30.521265029907227
epoch: 1, iter: 22800, loss: 30.170909881591797
epoch: 1, iter: 22900, loss: 30.44857406616211
epoch: 1, iter: 23000, loss: 30.58160972595215
epoch: 1, iter: 23100, loss: 30.80916404724121
epoch: 1, iter: 23200, loss: 30.507898330688477
epoch: 1, iter: 23300, loss: 30.540969848632812
epoch: 1, iter: 23400, loss: 30.272123336791992
epoch: 1, iter: 23500, loss: 30.770973205566406
epoch: 1, iter: 23600, loss: 30.44808006286621
epoch: 1, iter: 23700, loss: 30.266027450561523
epoch: 1, iter: 23800, loss: 30.43990707397461
epoch: 1, iter: 23900, loss: 30.382156372070312
epoch: 1, iter: 24000, loss: 30.580440521240234
epoch: 1, iteration: 24000, simlex-999: SpearmanrResult(correlation=0.14287100755966056, pvalue=9.131580692652058e-06), men: SpearmanrResult(correlation=0.14868537859505318, pvalue=2.804668835689092e-14), sim353: SpearmanrResult(correlation=0.2263985268197262, pvalue=4.613476464710824e-05), nearest to monster: ['monster', 'bird', 'blade', 'giant', 'robot', 'mine', 'pen', 'camera', 'triangle', 'boat']
epoch: 1, iter: 24100, loss: 30.35135841369629
epoch: 1, iter: 24200, loss: 30.669477462768555
epoch: 1, iter: 24300, loss: 30.54084587097168
epoch: 1, iter: 24400, loss: 30.29105567932129
epoch: 1, iter: 24500, loss: 30.614038467407227
epoch: 1, iter: 24600, loss: 30.688926696777344
epoch: 1, iter: 24700, loss: 30.522205352783203
epoch: 1, iter: 24800, loss: 30.543987274169922
epoch: 1, iter: 24900, loss: 31.09662628173828
epoch: 1, iter: 25000, loss: 30.970827102661133
epoch: 1, iter: 25100, loss: 30.467174530029297
epoch: 1, iter: 25200, loss: 30.76879119873047
epoch: 1, iter: 25300, loss: 30.6207218170166
epoch: 1, iter: 25400, loss: 30.490726470947266
epoch: 1, iter: 25500, loss: 30.458398818969727
epoch: 1, iter: 25600, loss: 30.703933715820312
epoch: 1, iter: 25700, loss: 30.121395111083984
epoch: 1, iter: 25800, loss: 30.44470977783203
epoch: 1, iter: 25900, loss: 30.887786865234375
epoch: 1, iter: 26000, loss: 30.558914184570312
epoch: 1, iteration: 26000, simlex-999: SpearmanrResult(correlation=0.1440751174505626, pvalue=7.656767087120004e-06), men: SpearmanrResult(correlation=0.1491477742745481, pvalue=2.3302203512655484e-14), sim353: SpearmanrResult(correlation=0.23077736171791446, pvalue=3.247610265381441e-05), nearest to monster: ['monster', 'blade', 'bird', 'robot', 'mine', 'elephant', 'harp', 'triangle', 'pen', 'reed']
epoch: 1, iter: 26100, loss: 30.59500503540039
epoch: 1, iter: 26200, loss: 30.334857940673828
epoch: 1, iter: 26300, loss: 30.802188873291016
epoch: 1, iter: 26400, loss: 30.327043533325195
epoch: 1, iter: 26500, loss: 30.643577575683594
epoch: 1, iter: 26600, loss: 30.822498321533203
epoch: 1, iter: 26700, loss: 30.609739303588867
epoch: 1, iter: 26800, loss: 30.348751068115234
epoch: 1, iter: 26900, loss: 30.833683013916016
epoch: 1, iter: 27000, loss: 30.705856323242188
epoch: 1, iter: 27100, loss: 30.677705764770508
epoch: 1, iter: 27200, loss: 30.479990005493164
epoch: 1, iter: 27300, loss: 30.481945037841797
epoch: 1, iter: 27400, loss: 30.73859214782715
epoch: 1, iter: 27500, loss: 30.516708374023438
epoch: 1, iter: 27600, loss: 30.041893005371094
epoch: 1, iter: 27700, loss: 30.019962310791016
epoch: 1, iter: 27800, loss: 30.198917388916016
epoch: 1, iter: 27900, loss: 31.1048583984375
epoch: 1, iter: 28000, loss: 30.839107513427734
epoch: 1, iteration: 28000, simlex-999: SpearmanrResult(correlation=0.14549903097533917, pvalue=6.205612354950464e-06), men: SpearmanrResult(correlation=0.14966965306971067, pvalue=1.8890981268115036e-14), sim353: SpearmanrResult(correlation=0.23346739336642225, pvalue=2.6087214499345555e-05), nearest to monster: ['monster', 'robot', 'blade', 'bird', 'mine', 'reed', 'triangle', 'ghost', 'pen', 'harp']
epoch: 1, iter: 28100, loss: 30.756732940673828
epoch: 1, iter: 28200, loss: 30.536327362060547
epoch: 1, iter: 28300, loss: 31.24537467956543
epoch: 1, iter: 28400, loss: 30.601255416870117
epoch: 1, iter: 28500, loss: 30.263526916503906
epoch: 1, iter: 28600, loss: 30.142976760864258
epoch: 1, iter: 28700, loss: 30.747371673583984
epoch: 1, iter: 28800, loss: 30.630146026611328
epoch: 1, iter: 28900, loss: 30.744644165039062
epoch: 1, iter: 29000, loss: 30.7540283203125
epoch: 1, iter: 29100, loss: 30.279701232910156
epoch: 1, iter: 29200, loss: 30.66191291809082
epoch: 1, iter: 29300, loss: 30.671695709228516
epoch: 1, iter: 29400, loss: 30.434926986694336
epoch: 1, iter: 29500, loss: 30.72023582458496
epoch: 1, iter: 29600, loss: 30.603559494018555
epoch: 1, iter: 29700, loss: 30.372743606567383
epoch: 1, iter: 29800, loss: 30.525760650634766
epoch: 1, iter: 29900, loss: 30.840803146362305
epoch: 1, iter: 30000, loss: 30.364925384521484
epoch: 1, iteration: 30000, simlex-999: SpearmanrResult(correlation=0.14568623594428892, pvalue=6.035624214317192e-06), men: SpearmanrResult(correlation=0.1509883492958195, pvalue=1.1079359739743368e-14), sim353: SpearmanrResult(correlation=0.23492314885797097, pvalue=2.3145855166212694e-05), nearest to monster: ['monster', 'robot', 'blade', 'reed', 'mine', 'rod', 'pen', 'bird', 'enigma', 'horn']
epoch: 1, iter: 30100, loss: 30.345247268676758
epoch: 1, iter: 30200, loss: 30.77888298034668
epoch: 1, iter: 30300, loss: 30.320167541503906
epoch: 1, iter: 30400, loss: 30.234546661376953
epoch: 1, iter: 30500, loss: 30.409408569335938
epoch: 1, iter: 30600, loss: 30.470806121826172
epoch: 1, iter: 30700, loss: 30.835254669189453
epoch: 1, iter: 30800, loss: 30.207406997680664
epoch: 1, iter: 30900, loss: 30.916057586669922
epoch: 1, iter: 31000, loss: 30.66683006286621
epoch: 1, iter: 31100, loss: 30.577659606933594
epoch: 1, iter: 31200, loss: 30.580257415771484
epoch: 1, iter: 31300, loss: 30.935575485229492
epoch: 1, iter: 31400, loss: 30.697229385375977
epoch: 1, iter: 31500, loss: 30.42900848388672
epoch: 1, iter: 31600, loss: 30.660232543945312
epoch: 1, iter: 31700, loss: 30.72662353515625
epoch: 1, iter: 31800, loss: 29.9237060546875
epoch: 1, iter: 31900, loss: 30.48178482055664
epoch: 1, iter: 32000, loss: 30.498600006103516
epoch: 1, iteration: 32000, simlex-999: SpearmanrResult(correlation=0.14636174425669718, pvalue=5.458483599637883e-06), men: SpearmanrResult(correlation=0.15148407706724934, pvalue=9.054505875289788e-15), sim353: SpearmanrResult(correlation=0.23389001400066448, pvalue=2.51987417090668e-05), nearest to monster: ['monster', 'blade', 'robot', 'reed', 'mine', 'bird', 'rod', 'giant', 'enigma', 'pen']
epoch: 1, iter: 32100, loss: 31.0069580078125
epoch: 1, iter: 32200, loss: 30.799236297607422
epoch: 1, iter: 32300, loss: 30.04582405090332
epoch: 1, iter: 32400, loss: 30.311925888061523
epoch: 1, iter: 32500, loss: 30.556798934936523
epoch: 1, iter: 32600, loss: 30.72783660888672
epoch: 1, iter: 32700, loss: 30.761629104614258
epoch: 1, iter: 32800, loss: 30.628524780273438
epoch: 1, iter: 32900, loss: 30.40520477294922
epoch: 1, iter: 33000, loss: 30.739730834960938
epoch: 1, iter: 33100, loss: 30.354564666748047
epoch: 1, iter: 33200, loss: 30.47233009338379
epoch: 1, iter: 33300, loss: 31.133811950683594
epoch: 1, iter: 33400, loss: 30.499738693237305
epoch: 1, iter: 33500, loss: 30.797992706298828
epoch: 1, iter: 33600, loss: 30.39028549194336
epoch: 1, iter: 33700, loss: 30.41649627685547
epoch: 1, iter: 33800, loss: 30.45271873474121
epoch: 1, iter: 33900, loss: 30.6096248626709
epoch: 1, iter: 34000, loss: 30.480247497558594
epoch: 1, iteration: 34000, simlex-999: SpearmanrResult(correlation=0.1473754688161237, pvalue=4.69031176866327e-06), men: SpearmanrResult(correlation=0.1529620524813248, pvalue=4.940947898179605e-15), sim353: SpearmanrResult(correlation=0.2346744277518143, pvalue=2.362507911995377e-05), nearest to monster: ['monster', 'blade', 'robot', 'mine', 'bird', 'giant', 'reed', 'rod', 'clown', 'enigma']
epoch: 1, iter: 34100, loss: 30.54153823852539
epoch: 1, iter: 34200, loss: 30.292634963989258
epoch: 1, iter: 34300, loss: 30.777355194091797
epoch: 1, iter: 34400, loss: 30.559667587280273
epoch: 1, iter: 34500, loss: 29.992252349853516
epoch: 1, iter: 34600, loss: 30.286727905273438
epoch: 1, iter: 34700, loss: 30.328699111938477
epoch: 1, iter: 34800, loss: 30.475990295410156
epoch: 1, iter: 34900, loss: 30.71676254272461
epoch: 1, iter: 35000, loss: 30.722000122070312
epoch: 1, iter: 35100, loss: 30.39300537109375
epoch: 1, iter: 35200, loss: 30.483230590820312
epoch: 1, iter: 35300, loss: 30.614459991455078
epoch: 1, iter: 35400, loss: 29.942462921142578
epoch: 1, iter: 35500, loss: 30.2659854888916
epoch: 1, iter: 35600, loss: 30.37142562866211
epoch: 1, iter: 35700, loss: 29.414955139160156
epoch: 1, iter: 35800, loss: 30.6357479095459
epoch: 1, iter: 35900, loss: 30.29971694946289
epoch: 1, iter: 36000, loss: 30.45860481262207
epoch: 1, iteration: 36000, simlex-999: SpearmanrResult(correlation=0.1479277049908929, pvalue=4.316518848130977e-06), men: SpearmanrResult(correlation=0.1534592647777511, pvalue=4.024677001188328e-15), sim353: SpearmanrResult(correlation=0.23541144828393648, pvalue=2.22316752869189e-05), nearest to monster: ['monster', 'blade', 'giant', 'mine', 'bird', 'reed', 'robot', 'rod', 'clown', 'enigma']
epoch: 1, iter: 36100, loss: 30.45232391357422
epoch: 1, iter: 36200, loss: 30.192720413208008
epoch: 1, iter: 36300, loss: 30.173755645751953
epoch: 1, iter: 36400, loss: 30.194917678833008
epoch: 1, iter: 36500, loss: 30.539600372314453
epoch: 1, iter: 36600, loss: 30.462547302246094
epoch: 1, iter: 36700, loss: 30.38189697265625
epoch: 1, iter: 36800, loss: 30.229658126831055
epoch: 1, iter: 36900, loss: 30.55349349975586
epoch: 1, iter: 37000, loss: 30.451251983642578
epoch: 1, iter: 37100, loss: 30.258930206298828
epoch: 1, iter: 37200, loss: 30.375003814697266
epoch: 1, iter: 37300, loss: 30.661685943603516
epoch: 1, iter: 37400, loss: 30.22052001953125
epoch: 1, iter: 37500, loss: 30.464017868041992
epoch: 1, iter: 37600, loss: 30.531139373779297
epoch: 1, iter: 37700, loss: 30.161556243896484
epoch: 1, iter: 37800, loss: 30.280288696289062
epoch: 1, iter: 37900, loss: 30.579071044921875
epoch: 1, iter: 38000, loss: 30.68809700012207
epoch: 1, iteration: 38000, simlex-999: SpearmanrResult(correlation=0.14842186148466413, pvalue=4.006345881913544e-06), men: SpearmanrResult(correlation=0.1535692327051543, pvalue=3.845826952077038e-15), sim353: SpearmanrResult(correlation=0.24061126807866595, pvalue=1.4397516474117237e-05), nearest to monster: ['monster', 'blade', 'bird', 'mine', 'robot', 'reed', 'giant', 'ghost', 'enigma', 'harp']
epoch: 1, iter: 38100, loss: 30.60862922668457
epoch: 1, iter: 38200, loss: 30.42845916748047
epoch: 1, iter: 38300, loss: 30.334047317504883
epoch: 1, iter: 38400, loss: 30.224014282226562
epoch: 1, iter: 38500, loss: 30.38711166381836
epoch: 1, iter: 38600, loss: 30.579326629638672
epoch: 1, iter: 38700, loss: 30.49921417236328
epoch: 1, iter: 38800, loss: 30.80820083618164
epoch: 1, iter: 38900, loss: 31.00635528564453
epoch: 1, iter: 39000, loss: 30.365596771240234
epoch: 1, iter: 39100, loss: 30.78212547302246
epoch: 1, iter: 39200, loss: 30.845741271972656
epoch: 1, iter: 39300, loss: 30.45212173461914
epoch: 1, iter: 39400, loss: 30.290306091308594
epoch: 1, iter: 39500, loss: 30.514169692993164
epoch: 1, iter: 39600, loss: 30.55576515197754
epoch: 1, iter: 39700, loss: 31.103591918945312
epoch: 1, iter: 39800, loss: 30.821365356445312
epoch: 1, iter: 39900, loss: 30.697998046875
epoch: 1, iter: 40000, loss: 30.70787811279297
epoch: 1, iteration: 40000, simlex-999: SpearmanrResult(correlation=0.14840725941493657, pvalue=4.015197419076501e-06), men: SpearmanrResult(correlation=0.15357136041153727, pvalue=3.842444769779768e-15), sim353: SpearmanrResult(correlation=0.24335858208245514, pvalue=1.1399247512803185e-05), nearest to monster: ['monster', 'blade', 'bird', 'reed', 'robot', 'ghost', 'mine', 'enigma', 'rod', 'giant']
epoch: 1, iter: 40100, loss: 30.93113899230957
epoch: 1, iter: 40200, loss: 30.542682647705078
epoch: 1, iter: 40300, loss: 30.148162841796875
epoch: 1, iter: 40400, loss: 30.786636352539062
epoch: 1, iter: 40500, loss: 30.51471710205078
epoch: 1, iter: 40600, loss: 30.892784118652344
epoch: 1, iter: 40700, loss: 30.750877380371094
epoch: 1, iter: 40800, loss: 30.910011291503906
epoch: 1, iter: 40900, loss: 30.417316436767578
epoch: 1, iter: 41000, loss: 30.877635955810547
epoch: 1, iter: 41100, loss: 31.21525764465332
epoch: 1, iter: 41200, loss: 30.61797332763672
epoch: 1, iter: 41300, loss: 29.999229431152344
epoch: 1, iter: 41400, loss: 30.419879913330078
epoch: 1, iter: 41500, loss: 30.497615814208984
epoch: 1, iter: 41600, loss: 31.086910247802734
epoch: 1, iter: 41700, loss: 31.012123107910156
epoch: 1, iter: 41800, loss: 30.67609977722168
epoch: 1, iter: 41900, loss: 30.800514221191406
epoch: 1, iter: 42000, loss: 30.609895706176758
epoch: 1, iteration: 42000, simlex-999: SpearmanrResult(correlation=0.15010702795733427, pvalue=3.101153292343823e-06), men: SpearmanrResult(correlation=0.15464227684833873, pvalue=2.4637832880461148e-15), sim353: SpearmanrResult(correlation=0.2412430532740497, pvalue=1.3648100607040392e-05), nearest to monster: ['monster', 'blade', 'ghost', 'bird', 'robot', 'mine', 'reed', 'enigma', 'tiger', 'reads']
epoch: 1, iter: 42100, loss: 30.431297302246094
epoch: 1, iter: 42200, loss: 31.107322692871094
epoch: 1, iter: 42300, loss: 30.734027862548828
epoch: 1, iter: 42400, loss: 30.269119262695312
epoch: 1, iter: 42500, loss: 30.10508155822754
epoch: 1, iter: 42600, loss: 30.353633880615234
epoch: 1, iter: 42700, loss: 30.593158721923828
epoch: 1, iter: 42800, loss: 30.670429229736328
epoch: 1, iter: 42900, loss: 30.44912338256836
epoch: 1, iter: 43000, loss: 30.147382736206055
epoch: 1, iter: 43100, loss: 30.15931510925293
epoch: 1, iter: 43200, loss: 30.213638305664062
epoch: 1, iter: 43300, loss: 30.583301544189453
epoch: 1, iter: 43400, loss: 30.891719818115234
epoch: 1, iter: 43500, loss: 30.8968448638916
epoch: 1, iter: 43600, loss: 30.235538482666016
epoch: 1, iter: 43700, loss: 30.293712615966797
epoch: 1, iter: 43800, loss: 30.817930221557617
epoch: 1, iter: 43900, loss: 30.755901336669922
epoch: 1, iter: 44000, loss: 30.5270938873291
epoch: 1, iteration: 44000, simlex-999: SpearmanrResult(correlation=0.15040984462509274, pvalue=2.9607903887451717e-06), men: SpearmanrResult(correlation=0.15462659465737233, pvalue=2.479925723603805e-15), sim353: SpearmanrResult(correlation=0.24184031978628343, pvalue=1.29738022188437e-05), nearest to monster: ['monster', 'ghost', 'robot', 'blade', 'bird', 'reed', 'enigma', 'mine', 'pen', 'giant']
epoch: 1, iter: 44100, loss: 30.67951011657715
epoch: 1, iter: 44200, loss: 30.391963958740234
epoch: 1, iter: 44300, loss: 30.283348083496094
epoch: 1, iter: 44400, loss: 30.486854553222656
epoch: 1, iter: 44500, loss: 29.995058059692383
epoch: 1, iter: 44600, loss: 29.919422149658203
epoch: 1, iter: 44700, loss: 30.681249618530273
epoch: 1, iter: 44800, loss: 30.176651000976562
epoch: 1, iter: 44900, loss: 31.011629104614258
epoch: 1, iter: 45000, loss: 30.286090850830078
epoch: 1, iter: 45100, loss: 30.60489273071289
epoch: 1, iter: 45200, loss: 30.306713104248047
epoch: 1, iter: 45300, loss: 30.408802032470703
epoch: 1, iter: 45400, loss: 30.530902862548828
epoch: 1, iter: 45500, loss: 30.43999481201172
epoch: 1, iter: 45600, loss: 30.87363624572754
epoch: 1, iter: 45700, loss: 30.33321762084961
epoch: 1, iter: 45800, loss: 30.374361038208008
epoch: 1, iter: 45900, loss: 30.656036376953125
epoch: 1, iter: 46000, loss: 30.552873611450195
epoch: 1, iteration: 46000, simlex-999: SpearmanrResult(correlation=0.1506515900016934, pvalue=2.8531245356788605e-06), men: SpearmanrResult(correlation=0.15536691339728612, pvalue=1.820665609880339e-15), sim353: SpearmanrResult(correlation=0.24012203571531798, pvalue=1.5004498206655285e-05), nearest to monster: ['monster', 'robot', 'bird', 'blade', 'mine', 'ghost', 'enigma', 'triangle', 'reed', 'pen']
epoch: 1, iter: 46100, loss: 30.70708656311035
epoch: 1, iter: 46200, loss: 30.461339950561523
epoch: 1, iter: 46300, loss: 30.217098236083984
epoch: 1, iter: 46400, loss: 30.840656280517578
epoch: 1, iter: 46500, loss: 30.493894577026367
epoch: 1, iter: 46600, loss: 30.61757469177246
epoch: 1, iter: 46700, loss: 30.641674041748047
epoch: 1, iter: 46800, loss: 30.795719146728516
epoch: 1, iter: 46900, loss: 30.51910400390625
epoch: 1, iter: 47000, loss: 30.65304946899414
epoch: 1, iter: 47100, loss: 30.11658477783203
epoch: 1, iter: 47200, loss: 30.48131561279297
epoch: 1, iter: 47300, loss: 30.761260986328125
epoch: 1, iter: 47400, loss: 30.574722290039062
epoch: 1, iter: 47500, loss: 30.653053283691406
epoch: 1, iter: 47600, loss: 30.582984924316406
epoch: 1, iter: 47700, loss: 30.558650970458984
epoch: 1, iter: 47800, loss: 30.786725997924805
epoch: 1, iter: 47900, loss: 30.690078735351562
epoch: 1, iter: 48000, loss: 30.940021514892578
epoch: 1, iteration: 48000, simlex-999: SpearmanrResult(correlation=0.1512458867092362, pvalue=2.6041543817031568e-06), men: SpearmanrResult(correlation=0.1557567213740912, pvalue=1.5463267464958923e-15), sim353: SpearmanrResult(correlation=0.24230566895264108, pvalue=1.247048744341614e-05), nearest to monster: ['monster', 'robot', 'mine', 'blade', 'ghost', 'bird', 'triangle', 'pen', 'mirror', 'reed']
epoch: 1, iter: 48100, loss: 30.569496154785156
epoch: 1, iter: 48200, loss: 30.488758087158203
epoch: 1, iter: 48300, loss: 30.724409103393555
epoch: 1, iter: 48400, loss: 30.37924575805664
epoch: 1, iter: 48500, loss: 30.688404083251953
epoch: 1, iter: 48600, loss: 31.19538688659668
epoch: 1, iter: 48700, loss: 31.03116226196289
epoch: 1, iter: 48800, loss: 30.401390075683594
epoch: 1, iter: 48900, loss: 30.71941566467285
epoch: 1, iter: 49000, loss: 30.60601043701172
epoch: 1, iter: 49100, loss: 30.593238830566406
epoch: 1, iter: 49200, loss: 30.418926239013672
epoch: 1, iter: 49300, loss: 30.479490280151367
epoch: 1, iter: 49400, loss: 30.65471649169922
epoch: 1, iter: 49500, loss: 31.25054359436035
epoch: 1, iter: 49600, loss: 30.942890167236328
epoch: 1, iter: 49700, loss: 30.643369674682617
epoch: 1, iter: 49800, loss: 30.203311920166016
epoch: 1, iter: 49900, loss: 30.408056259155273
epoch: 1, iter: 50000, loss: 30.49826431274414
epoch: 1, iteration: 50000, simlex-999: SpearmanrResult(correlation=0.1525143841833279, pvalue=2.140523243449846e-06), men: SpearmanrResult(correlation=0.15705781004352684, pvalue=8.938073731951767e-16), sim353: SpearmanrResult(correlation=0.24303933091018648, pvalue=1.1714453427503608e-05), nearest to monster: ['monster', 'robot', 'mine', 'ghost', 'blade', 'triangle', 'bird', 'mirror', 'pen', 'trilogy']
epoch: 1, iter: 50100, loss: 30.582521438598633
epoch: 1, iter: 50200, loss: 30.166404724121094
epoch: 1, iter: 50300, loss: 30.79269790649414
epoch: 1, iter: 50400, loss: 30.7398738861084
epoch: 1, iter: 50500, loss: 30.5670108795166
epoch: 1, iter: 50600, loss: 30.718910217285156
epoch: 1, iter: 50700, loss: 30.94159507751465
epoch: 1, iter: 50800, loss: 30.046207427978516
epoch: 1, iter: 50900, loss: 30.098331451416016
epoch: 1, iter: 51000, loss: 29.920578002929688
epoch: 1, iter: 51100, loss: 30.722366333007812
epoch: 1, iter: 51200, loss: 30.87830352783203
epoch: 1, iter: 51300, loss: 30.5864200592041
epoch: 1, iter: 51400, loss: 30.589786529541016
epoch: 1, iter: 51500, loss: 30.31692886352539
epoch: 1, iter: 51600, loss: 30.661989212036133
epoch: 1, iter: 51700, loss: 30.14481544494629
epoch: 1, iter: 51800, loss: 30.520448684692383
epoch: 1, iter: 51900, loss: 30.797508239746094
epoch: 1, iter: 52000, loss: 29.767147064208984
epoch: 1, iteration: 52000, simlex-999: SpearmanrResult(correlation=0.15373255141051995, pvalue=1.7705182477987938e-06), men: SpearmanrResult(correlation=0.1585061793559117, pvalue=4.829025134421122e-16), sim353: SpearmanrResult(correlation=0.24509030045172758, pvalue=9.825140052862682e-06), nearest to monster: ['monster', 'robot', 'blade', 'mine', 'ghost', 'triangle', 'pen', 'reed', 'mirror', 'storyline']
epoch: 1, iter: 52100, loss: 30.682071685791016
epoch: 1, iter: 52200, loss: 30.016061782836914
epoch: 1, iter: 52300, loss: 30.534984588623047
epoch: 1, iter: 52400, loss: 30.56295394897461
epoch: 1, iter: 52500, loss: 30.030967712402344
epoch: 1, iter: 52600, loss: 30.3729305267334
epoch: 1, iter: 52700, loss: 30.135780334472656
epoch: 1, iter: 52800, loss: 30.442276000976562
epoch: 1, iter: 52900, loss: 30.262731552124023
epoch: 1, iter: 53000, loss: 30.31039047241211
epoch: 1, iter: 53100, loss: 31.22720718383789
epoch: 1, iter: 53200, loss: 30.35527801513672
epoch: 1, iter: 53300, loss: 30.849201202392578
epoch: 1, iter: 53400, loss: 30.32939910888672
epoch: 1, iter: 53500, loss: 30.342052459716797
epoch: 1, iter: 53600, loss: 30.57972526550293
epoch: 1, iter: 53700, loss: 29.98486328125
epoch: 1, iter: 53800, loss: 30.098655700683594
epoch: 1, iter: 53900, loss: 30.3535213470459
epoch: 1, iter: 54000, loss: 30.042743682861328
epoch: 1, iteration: 54000, simlex-999: SpearmanrResult(correlation=0.1536032686694018, pvalue=1.8066656752367236e-06), men: SpearmanrResult(correlation=0.1585990419061131, pvalue=4.641201609227958e-16), sim353: SpearmanrResult(correlation=0.25060825189386676, pvalue=6.074459332227015e-06), nearest to monster: ['monster', 'robot', 'ghost', 'blade', 'mine', 'triangle', 'bird', 'pen', 'giant', 'trilogy']
epoch: 1, iter: 54100, loss: 30.99134063720703
epoch: 1, iter: 54200, loss: 30.4207820892334
epoch: 1, iter: 54300, loss: 29.99266815185547
epoch: 1, iter: 54400, loss: 30.288175582885742
epoch: 1, iter: 54500, loss: 30.557764053344727
epoch: 1, iter: 54600, loss: 30.272037506103516
epoch: 1, iter: 54700, loss: 30.78939437866211
epoch: 1, iter: 54800, loss: 30.318763732910156
epoch: 1, iter: 54900, loss: 30.315868377685547
epoch: 1, iter: 55000, loss: 30.52359962463379
epoch: 1, iter: 55100, loss: 30.504047393798828
epoch: 1, iter: 55200, loss: 30.359554290771484
epoch: 1, iter: 55300, loss: 30.453826904296875
epoch: 1, iter: 55400, loss: 30.830547332763672
epoch: 1, iter: 55500, loss: 30.533924102783203
epoch: 1, iter: 55600, loss: 30.538036346435547
epoch: 1, iter: 55700, loss: 30.60943603515625
epoch: 1, iter: 55800, loss: 30.83778190612793
epoch: 1, iter: 55900, loss: 30.720783233642578
epoch: 1, iter: 56000, loss: 30.150545120239258
epoch: 1, iteration: 56000, simlex-999: SpearmanrResult(correlation=0.1549713586940779, pvalue=1.457568750556874e-06), men: SpearmanrResult(correlation=0.15844155102847718, pvalue=4.96414018000047e-16), sim353: SpearmanrResult(correlation=0.24769058352404524, pvalue=7.843960247464432e-06), nearest to monster: ['monster', 'robot', 'ghost', 'giant', 'pen', 'mine', 'bird', 'blade', 'storyline', 'triangle']
epoch: 1, iter: 56100, loss: 30.171369552612305
epoch: 1, iter: 56200, loss: 30.735065460205078
epoch: 1, iter: 56300, loss: 30.493385314941406
epoch: 1, iter: 56400, loss: 30.45469856262207
epoch: 1, iter: 56500, loss: 30.479145050048828
epoch: 1, iter: 56600, loss: 30.517457962036133
epoch: 1, iter: 56700, loss: 30.358793258666992
epoch: 1, iter: 56800, loss: 30.938446044921875
epoch: 1, iter: 56900, loss: 30.858768463134766
epoch: 1, iter: 57000, loss: 30.36663818359375
epoch: 1, iter: 57100, loss: 30.539148330688477
epoch: 1, iter: 57200, loss: 30.83847427368164
epoch: 1, iter: 57300, loss: 30.67807388305664
epoch: 1, iter: 57400, loss: 30.247142791748047
epoch: 1, iter: 57500, loss: 30.21233367919922
epoch: 1, iter: 57600, loss: 30.43688201904297
epoch: 1, iter: 57700, loss: 30.402862548828125
epoch: 1, iter: 57800, loss: 30.552614212036133
epoch: 1, iter: 57900, loss: 30.985126495361328
epoch: 1, iter: 58000, loss: 30.84340476989746
epoch: 1, iteration: 58000, simlex-999: SpearmanrResult(correlation=0.1567349094604098, pvalue=1.1021343002031157e-06), men: SpearmanrResult(correlation=0.15902652554699048, pvalue=3.865317045437844e-16), sim353: SpearmanrResult(correlation=0.24948667457270562, pvalue=6.704232943262648e-06), nearest to monster: ['monster', 'robot', 'giant', 'pen', 'ghost', 'mine', 'bird', 'clown', 'reed', 'mirror']
epoch: 1, iter: 58100, loss: 30.185630798339844
epoch: 1, iter: 58200, loss: 30.426095962524414
epoch: 1, iter: 58300, loss: 30.398298263549805
epoch: 1, iter: 58400, loss: 30.785690307617188
epoch: 1, iter: 58500, loss: 30.762544631958008
epoch: 1, iter: 58600, loss: 30.656660079956055
epoch: 1, iter: 58700, loss: 30.267963409423828
epoch: 1, iter: 58800, loss: 30.180572509765625
epoch: 1, iter: 58900, loss: 30.352771759033203
epoch: 1, iter: 59000, loss: 30.799413681030273
epoch: 1, iter: 59100, loss: 30.187427520751953
epoch: 1, iter: 59200, loss: 30.583654403686523
epoch: 1, iter: 59300, loss: 30.478708267211914
epoch: 1, iter: 59400, loss: 30.59113121032715
epoch: 1, iter: 59500, loss: 30.526996612548828
epoch: 1, iter: 59600, loss: 29.880691528320312
epoch: 1, iter: 59700, loss: 30.175827026367188
epoch: 1, iter: 59800, loss: 31.251361846923828
epoch: 1, iter: 59900, loss: 30.632102966308594
epoch: 1, iter: 60000, loss: 30.681888580322266
epoch: 1, iteration: 60000, simlex-999: SpearmanrResult(correlation=0.15766878472714893, pvalue=9.493068391257752e-07), men: SpearmanrResult(correlation=0.1599384328989951, pvalue=2.6120469754271507e-16), sim353: SpearmanrResult(correlation=0.2506047067318135, pvalue=6.0763581426292506e-06), nearest to monster: ['monster', 'robot', 'giant', 'pen', 'ghost', 'cow', 'storyline', 'blade', 'bird', 'mine']
epoch: 1, iter: 60100, loss: 30.331680297851562
epoch: 1, iter: 60200, loss: 30.630077362060547
epoch: 1, iter: 60300, loss: 30.40506362915039
epoch: 1, iter: 60400, loss: 30.622928619384766
epoch: 1, iter: 60500, loss: 30.441761016845703
epoch: 1, iter: 60600, loss: 30.31716537475586
epoch: 1, iter: 60700, loss: 30.88729476928711
epoch: 1, iter: 60800, loss: 30.464248657226562
epoch: 1, iter: 60900, loss: 30.365467071533203
epoch: 1, iter: 61000, loss: 30.315540313720703
epoch: 1, iter: 61100, loss: 30.57969856262207
epoch: 1, iter: 61200, loss: 30.44414520263672
epoch: 1, iter: 61300, loss: 30.557884216308594
epoch: 1, iter: 61400, loss: 30.003623962402344
epoch: 1, iter: 61500, loss: 30.530445098876953
epoch: 1, iter: 61600, loss: 30.768972396850586
epoch: 1, iter: 61700, loss: 30.325469970703125
epoch: 1, iter: 61800, loss: 30.635547637939453
epoch: 1, iter: 61900, loss: 30.08446502685547
epoch: 1, iter: 62000, loss: 30.466468811035156
epoch: 1, iteration: 62000, simlex-999: SpearmanrResult(correlation=0.1572838048897373, pvalue=1.0096640956970655e-06), men: SpearmanrResult(correlation=0.16137007881415613, pvalue=1.405264112416452e-16), sim353: SpearmanrResult(correlation=0.25097676215992787, pvalue=5.8801359002641125e-06), nearest to monster: ['monster', 'robot', 'pen', 'ghost', 'giant', 'cow', 'mine', 'storyline', 'bird', 'blade']
epoch: 1, iter: 62100, loss: 30.18429946899414
epoch: 1, iter: 62200, loss: 30.559833526611328
epoch: 1, iter: 62300, loss: 30.80440902709961
epoch: 1, iter: 62400, loss: 30.450206756591797
epoch: 1, iter: 62500, loss: 30.552818298339844
epoch: 1, iter: 62600, loss: 30.82094383239746
epoch: 1, iter: 62700, loss: 30.254344940185547
epoch: 1, iter: 62800, loss: 30.72846221923828
epoch: 1, iter: 62900, loss: 30.654434204101562
epoch: 1, iter: 63000, loss: 30.073328018188477
epoch: 1, iter: 63100, loss: 30.521087646484375
epoch: 1, iter: 63200, loss: 30.763505935668945
epoch: 1, iter: 63300, loss: 30.240577697753906
epoch: 1, iter: 63400, loss: 30.317813873291016
epoch: 1, iter: 63500, loss: 30.43919563293457
epoch: 1, iter: 63600, loss: 30.885873794555664
epoch: 1, iter: 63700, loss: 30.13918685913086
epoch: 1, iter: 63800, loss: 30.71306610107422
epoch: 1, iter: 63900, loss: 30.3992919921875
epoch: 1, iter: 64000, loss: 30.920867919921875
epoch: 1, iteration: 64000, simlex-999: SpearmanrResult(correlation=0.15698834744605628, pvalue=1.0584701505049052e-06), men: SpearmanrResult(correlation=0.1624835806175362, pvalue=8.642929806246007e-17), sim353: SpearmanrResult(correlation=0.24978148278555448, pvalue=6.532925572818505e-06), nearest to monster: ['monster', 'robot', 'pen', 'storyline', 'giant', 'ghost', 'triangle', 'blade', 'cow', 'clown']
epoch: 1, iter: 64100, loss: 30.346240997314453
epoch: 1, iter: 64200, loss: 30.147878646850586
epoch: 1, iter: 64300, loss: 30.068510055541992
epoch: 1, iter: 64400, loss: 30.74982452392578
epoch: 1, iter: 64500, loss: 30.429706573486328
epoch: 1, iter: 64600, loss: 30.37489128112793
epoch: 1, iter: 64700, loss: 30.758684158325195
epoch: 1, iter: 64800, loss: 30.118595123291016
epoch: 1, iter: 64900, loss: 30.60893440246582
epoch: 1, iter: 65000, loss: 30.800472259521484
epoch: 1, iter: 65100, loss: 30.511920928955078
epoch: 1, iter: 65200, loss: 30.794395446777344
epoch: 1, iter: 65300, loss: 30.49081802368164
epoch: 1, iter: 65400, loss: 30.53462791442871
epoch: 1, iter: 65500, loss: 30.544513702392578
epoch: 1, iter: 65600, loss: 30.508167266845703
epoch: 1, iter: 65700, loss: 30.721145629882812
epoch: 1, iter: 65800, loss: 30.107677459716797
epoch: 1, iter: 65900, loss: 30.400524139404297
epoch: 1, iter: 66000, loss: 30.216068267822266
epoch: 1, iteration: 66000, simlex-999: SpearmanrResult(correlation=0.15907493049754254, pvalue=7.569762376508921e-07), men: SpearmanrResult(correlation=0.1622197008816302, pvalue=9.70111944701947e-17), sim353: SpearmanrResult(correlation=0.25537220334352345, pvalue=3.974470732999653e-06), nearest to monster: ['monster', 'robot', 'giant', 'pen', 'storyline', 'triangle', 'clown', 'reed', 'ghost', 'blade']
epoch: 1, iter: 66100, loss: 30.723974227905273
epoch: 1, iter: 66200, loss: 30.21212387084961
epoch: 1, iter: 66300, loss: 30.621620178222656
epoch: 1, iter: 66400, loss: 31.26927947998047
epoch: 1, iter: 66500, loss: 30.06582260131836
epoch: 1, iter: 66600, loss: 30.753280639648438
epoch: 1, iter: 66700, loss: 30.463829040527344
epoch: 1, iter: 66800, loss: 30.498855590820312
epoch: 1, iter: 66900, loss: 30.842039108276367
epoch: 1, iter: 67000, loss: 29.559223175048828
epoch: 1, iter: 67100, loss: 30.619075775146484
epoch: 1, iter: 67200, loss: 30.44180679321289
epoch: 1, iter: 67300, loss: 30.190532684326172
epoch: 1, iter: 67400, loss: 30.0849552154541
epoch: 1, iter: 67500, loss: 30.109207153320312
epoch: 1, iter: 67600, loss: 30.49976348876953
epoch: 1, iter: 67700, loss: 30.740123748779297
epoch: 1, iter: 67800, loss: 30.926212310791016
epoch: 1, iter: 67900, loss: 30.441604614257812
epoch: 1, iter: 68000, loss: 30.73117446899414
epoch: 1, iteration: 68000, simlex-999: SpearmanrResult(correlation=0.15894696899386346, pvalue=7.727968829631284e-07), men: SpearmanrResult(correlation=0.16225855404638603, pvalue=9.537652911995123e-17), sim353: SpearmanrResult(correlation=0.2561217252365703, pvalue=3.715012465818261e-06), nearest to monster: ['monster', 'robot', 'giant', 'clown', 'pen', 'triangle', 'killer', 'storyline', 'reed', 'vampire']
epoch: 1, iter: 68100, loss: 30.470741271972656
epoch: 1, iter: 68200, loss: 30.515743255615234
epoch: 1, iter: 68300, loss: 30.583833694458008
epoch: 1, iter: 68400, loss: 29.629898071289062
epoch: 1, iter: 68500, loss: 30.373931884765625
epoch: 1, iter: 68600, loss: 30.927085876464844
epoch: 1, iter: 68700, loss: 30.736282348632812
epoch: 1, iter: 68800, loss: 30.456012725830078
epoch: 1, iter: 68900, loss: 30.077430725097656
epoch: 1, iter: 69000, loss: 30.592777252197266
epoch: 1, iter: 69100, loss: 30.24420738220215
epoch: 1, iter: 69200, loss: 29.89266586303711
epoch: 1, iter: 69300, loss: 30.14252471923828
epoch: 1, iter: 69400, loss: 30.470155715942383
epoch: 1, iter: 69500, loss: 30.696094512939453
epoch: 1, iter: 69600, loss: 30.263404846191406
epoch: 1, iter: 69700, loss: 30.48387336730957
epoch: 1, iter: 69800, loss: 31.011812210083008
epoch: 1, iter: 69900, loss: 30.354785919189453
epoch: 1, iter: 70000, loss: 30.257991790771484
epoch: 1, iteration: 70000, simlex-999: SpearmanrResult(correlation=0.1599804231196073, pvalue=6.536001505651106e-07), men: SpearmanrResult(correlation=0.16235736400138848, pvalue=9.134061487743441e-17), sim353: SpearmanrResult(correlation=0.2579999147748847, pvalue=3.1339385169295858e-06), nearest to monster: ['monster', 'robot', 'clown', 'giant', 'triangle', 'pen', 'storyline', 'vampire', 'ghost', 'killer']
epoch: 1, iter: 70100, loss: 30.840045928955078
epoch: 1, iter: 70200, loss: 30.389122009277344
epoch: 1, iter: 70300, loss: 31.05836296081543
epoch: 1, iter: 70400, loss: 30.655227661132812
epoch: 1, iter: 70500, loss: 30.400094985961914
epoch: 1, iter: 70600, loss: 30.757015228271484
epoch: 1, iter: 70700, loss: 30.292152404785156
epoch: 1, iter: 70800, loss: 30.084205627441406
epoch: 1, iter: 70900, loss: 30.660961151123047
epoch: 1, iter: 71000, loss: 30.49699592590332
epoch: 1, iter: 71100, loss: 30.42240333557129
epoch: 1, iter: 71200, loss: 29.931034088134766
epoch: 1, iter: 71300, loss: 30.057233810424805
epoch: 1, iter: 71400, loss: 30.548381805419922
epoch: 1, iter: 71500, loss: 30.618526458740234
epoch: 1, iter: 71600, loss: 30.42486000061035
epoch: 1, iter: 71700, loss: 30.71780014038086
epoch: 1, iter: 71800, loss: 30.28960418701172
epoch: 1, iter: 71900, loss: 30.402591705322266
epoch: 1, iter: 72000, loss: 30.8114013671875
epoch: 1, iteration: 72000, simlex-999: SpearmanrResult(correlation=0.16101441806274847, pvalue=5.521495930342118e-07), men: SpearmanrResult(correlation=0.1633857027791665, pvalue=5.814925831866898e-17), sim353: SpearmanrResult(correlation=0.25737857847818424, pvalue=3.3158227988787696e-06), nearest to monster: ['monster', 'robot', 'clown', 'giant', 'triangle', 'killer', 'storyline', 'horn', 'bird', 'reed']
epoch: 1, iter: 72100, loss: 30.883159637451172
epoch: 1, iter: 72200, loss: 30.85186767578125
epoch: 1, iter: 72300, loss: 30.58966636657715
epoch: 1, iter: 72400, loss: 30.387969970703125
epoch: 1, iter: 72500, loss: 29.79990005493164
epoch: 1, iter: 72600, loss: 30.107318878173828
epoch: 1, iter: 72700, loss: 30.190916061401367
epoch: 1, iter: 72800, loss: 30.59153175354004
epoch: 1, iter: 72900, loss: 30.534543991088867
epoch: 1, iter: 73000, loss: 30.79871368408203
epoch: 1, iter: 73100, loss: 30.439369201660156
epoch: 1, iter: 73200, loss: 29.90771484375
epoch: 1, iter: 73300, loss: 29.77695083618164
epoch: 1, iter: 73400, loss: 30.999645233154297
epoch: 1, iter: 73500, loss: 30.230430603027344
epoch: 1, iter: 73600, loss: 30.236263275146484
epoch: 1, iter: 73700, loss: 29.803932189941406
epoch: 1, iter: 73800, loss: 30.766613006591797
epoch: 1, iter: 73900, loss: 30.48684310913086
epoch: 1, iter: 74000, loss: 30.37664222717285
epoch: 1, iteration: 74000, simlex-999: SpearmanrResult(correlation=0.1617221261012147, pvalue=4.916430156015046e-07), men: SpearmanrResult(correlation=0.16269528376899162, pvalue=7.876945371094953e-17), sim353: SpearmanrResult(correlation=0.2568775911038176, pvalue=3.4697706327940896e-06), nearest to monster: ['monster', 'giant', 'clown', 'robot', 'triangle', 'killer', 'horn', 'storyline', 'bird', 'pen']
epoch: 1, iter: 74100, loss: 30.254886627197266
epoch: 1, iter: 74200, loss: 29.888710021972656
epoch: 1, iter: 74300, loss: 30.417236328125
epoch: 1, iter: 74400, loss: 30.457595825195312
epoch: 1, iter: 74500, loss: 31.00020980834961
epoch: 1, iter: 74600, loss: 30.30846405029297
epoch: 1, iter: 74700, loss: 30.387718200683594
epoch: 1, iter: 74800, loss: 30.376087188720703
epoch: 1, iter: 74900, loss: 30.061664581298828
epoch: 1, iter: 75000, loss: 30.370288848876953
epoch: 1, iter: 75100, loss: 30.63956642150879
epoch: 1, iter: 75200, loss: 30.442768096923828
epoch: 1, iter: 75300, loss: 30.677764892578125
epoch: 1, iter: 75400, loss: 30.916812896728516
epoch: 1, iter: 75500, loss: 30.47184944152832
epoch: 1, iter: 75600, loss: 30.52167510986328
epoch: 1, iter: 75700, loss: 30.56326675415039
epoch: 1, iter: 75800, loss: 29.92554473876953
epoch: 1, iter: 75900, loss: 30.573081970214844
epoch: 1, iter: 76000, loss: 30.38399314880371
epoch: 1, iteration: 76000, simlex-999: SpearmanrResult(correlation=0.16169187742526095, pvalue=4.940931234078511e-07), men: SpearmanrResult(correlation=0.1633295111707588, pvalue=5.960650109011135e-17), sim353: SpearmanrResult(correlation=0.25485181087160225, pvalue=4.16468278962377e-06), nearest to monster: ['monster', 'triangle', 'robot', 'clown', 'giant', 'storyline', 'killer', 'pen', 'cow', 'shield']
epoch: 1, iter: 76100, loss: 30.317106246948242
epoch: 1, iter: 76200, loss: 30.010608673095703
epoch: 1, iter: 76300, loss: 29.795989990234375
epoch: 1, iter: 76400, loss: 29.63566780090332
epoch: 1, iter: 76500, loss: 30.61663055419922
epoch: 1, iter: 76600, loss: 30.317100524902344
epoch: 1, iter: 76700, loss: 30.912708282470703
epoch: 1, iter: 76800, loss: 30.493019104003906
epoch: 1, iter: 76900, loss: 30.66164779663086
epoch: 1, iter: 77000, loss: 30.15361213684082
epoch: 1, iter: 77100, loss: 30.159067153930664
epoch: 1, iter: 77200, loss: 30.553518295288086
epoch: 1, iter: 77300, loss: 30.48749542236328
epoch: 1, iter: 77400, loss: 30.554759979248047
epoch: 1, iter: 77500, loss: 30.53312110900879
epoch: 1, iter: 77600, loss: 30.761314392089844
epoch: 1, iter: 77700, loss: 31.00925064086914
epoch: 1, iter: 77800, loss: 30.383312225341797
epoch: 1, iter: 77900, loss: 30.3116455078125
epoch: 1, iter: 78000, loss: 30.420455932617188
epoch: 1, iteration: 78000, simlex-999: SpearmanrResult(correlation=0.16207894522857358, pvalue=4.6360979168089965e-07), men: SpearmanrResult(correlation=0.16372154472938574, pvalue=5.0143933981199564e-17), sim353: SpearmanrResult(correlation=0.2544614698707922, pvalue=4.313024622770899e-06), nearest to monster: ['monster', 'triangle', 'robot', 'clown', 'giant', 'killer', 'pen', 'cow', 'rod', 'bird']
epoch: 1, iter: 78100, loss: 30.672090530395508
epoch: 1, iter: 78200, loss: 30.56073760986328
epoch: 1, iter: 78300, loss: 30.491344451904297
epoch: 1, iter: 78400, loss: 31.016584396362305
epoch: 1, iter: 78500, loss: 30.333904266357422
epoch: 1, iter: 78600, loss: 30.13150405883789
epoch: 1, iter: 78700, loss: 30.275697708129883
epoch: 1, iter: 78800, loss: 29.988712310791016
epoch: 1, iter: 78900, loss: 30.521224975585938
epoch: 1, iter: 79000, loss: 30.032791137695312
epoch: 1, iter: 79100, loss: 30.854816436767578
epoch: 1, iter: 79200, loss: 30.634782791137695
epoch: 1, iter: 79300, loss: 30.44858741760254
epoch: 1, iter: 79400, loss: 30.231046676635742
epoch: 1, iter: 79500, loss: 30.371126174926758
epoch: 1, iter: 79600, loss: 29.989742279052734
epoch: 1, iter: 79700, loss: 30.68444061279297
epoch: 1, iter: 79800, loss: 30.262882232666016
epoch: 1, iter: 79900, loss: 30.341434478759766
epoch: 1, iter: 80000, loss: 29.98185920715332
epoch: 1, iteration: 80000, simlex-999: SpearmanrResult(correlation=0.16252507166083122, pvalue=4.3072065008154985e-07), men: SpearmanrResult(correlation=0.1643962621991115, pvalue=3.720276950472103e-17), sim353: SpearmanrResult(correlation=0.25403922241150295, pvalue=4.479160666059968e-06), nearest to monster: ['monster', 'triangle', 'robot', 'clown', 'giant', 'killer', 'rod', 'pen', 'bull', 'bird']
epoch: 1, iter: 80100, loss: 30.37212371826172
epoch: 1, iter: 80200, loss: 30.76333999633789
epoch: 1, iter: 80300, loss: 30.685781478881836
epoch: 1, iter: 80400, loss: 30.539093017578125
epoch: 1, iter: 80500, loss: 30.19442367553711
epoch: 1, iter: 80600, loss: 31.10211944580078
epoch: 1, iter: 80700, loss: 30.563905715942383
epoch: 1, iter: 80800, loss: 30.892704010009766
epoch: 1, iter: 80900, loss: 30.355934143066406
epoch: 1, iter: 81000, loss: 30.444995880126953
epoch: 1, iter: 81100, loss: 29.747629165649414
epoch: 1, iter: 81200, loss: 30.422718048095703
epoch: 1, iter: 81300, loss: 30.607858657836914
epoch: 1, iter: 81400, loss: 30.45087432861328
epoch: 1, iter: 81500, loss: 30.621387481689453
epoch: 1, iter: 81600, loss: 30.56511878967285
epoch: 1, iter: 81700, loss: 30.036951065063477
epoch: 1, iter: 81800, loss: 29.739484786987305
epoch: 1, iter: 81900, loss: 30.102828979492188
epoch: 1, iter: 82000, loss: 30.472938537597656
epoch: 1, iteration: 82000, simlex-999: SpearmanrResult(correlation=0.162995795015982, pvalue=3.984582727922843e-07), men: SpearmanrResult(correlation=0.16521711507501075, pvalue=2.5829343239938948e-17), sim353: SpearmanrResult(correlation=0.2553242503620664, pvalue=3.9916456335010605e-06), nearest to monster: ['monster', 'triangle', 'giant', 'clown', 'robot', 'pen', 'cow', 'killer', 'bird', 'hammer']
epoch: 1, iter: 82100, loss: 30.87786102294922
epoch: 1, iter: 82200, loss: 30.369300842285156
epoch: 1, iter: 82300, loss: 30.81732749938965
epoch: 1, iter: 82400, loss: 30.576255798339844
epoch: 1, iter: 82500, loss: 30.190576553344727
epoch: 1, iter: 82600, loss: 30.46633529663086
epoch: 1, iter: 82700, loss: 30.395225524902344
epoch: 1, iter: 82800, loss: 30.413116455078125
epoch: 1, iter: 82900, loss: 30.11839485168457
epoch: 1, iter: 83000, loss: 30.749446868896484
epoch: 1, iter: 83100, loss: 30.579679489135742
epoch: 1, iter: 83200, loss: 30.242351531982422
epoch: 1, iter: 83300, loss: 30.643089294433594
epoch: 1, iter: 83400, loss: 31.025341033935547
epoch: 1, iter: 83500, loss: 30.11600112915039
epoch: 1, iter: 83600, loss: 30.297754287719727
epoch: 1, iter: 83700, loss: 30.28591537475586
epoch: 1, iter: 83800, loss: 30.40618896484375
epoch: 1, iter: 83900, loss: 30.353286743164062
epoch: 1, iter: 84000, loss: 29.93646240234375
epoch: 1, iteration: 84000, simlex-999: SpearmanrResult(correlation=0.16359501384641933, pvalue=3.6074490269985206e-07), men: SpearmanrResult(correlation=0.16651686883970906, pvalue=1.4439073198647016e-17), sim353: SpearmanrResult(correlation=0.2544400123109962, pvalue=4.321323577205728e-06), nearest to monster: ['monster', 'triangle', 'clown', 'robot', 'killer', 'giant', 'pen', 'hammer', 'bull', 'cow']
epoch: 1, iter: 84100, loss: 30.29789161682129
epoch: 1, iter: 84200, loss: 30.246540069580078
epoch: 1, iter: 84300, loss: 30.901538848876953
epoch: 1, iter: 84400, loss: 30.117076873779297
epoch: 1, iter: 84500, loss: 30.69649887084961
epoch: 1, iter: 84600, loss: 30.63212776184082
epoch: 1, iter: 84700, loss: 29.883480072021484
epoch: 1, iter: 84800, loss: 30.262691497802734
epoch: 1, iter: 84900, loss: 29.80817413330078
epoch: 1, iter: 85000, loss: 30.048599243164062
epoch: 1, iter: 85100, loss: 29.657894134521484
epoch: 1, iter: 85200, loss: 30.541133880615234
epoch: 1, iter: 85300, loss: 29.884437561035156
epoch: 1, iter: 85400, loss: 29.609167098999023
epoch: 1, iter: 85500, loss: 30.771604537963867
epoch: 1, iter: 85600, loss: 30.919052124023438
epoch: 1, iter: 85700, loss: 30.89596939086914
epoch: 1, iter: 85800, loss: 30.242305755615234
epoch: 1, iter: 85900, loss: 30.13596534729004
epoch: 1, iter: 86000, loss: 30.44934844970703
epoch: 1, iteration: 86000, simlex-999: SpearmanrResult(correlation=0.1631675148083149, pvalue=3.8727894368921164e-07), men: SpearmanrResult(correlation=0.1671210510930885, pvalue=1.1001130410358958e-17), sim353: SpearmanrResult(correlation=0.25503748920366215, pvalue=4.095839170272771e-06), nearest to monster: ['monster', 'triangle', 'clown', 'robot', 'killer', 'giant', 'bull', 'pen', 'cow', 'demon']
epoch: 1, iter: 86100, loss: 30.831403732299805
epoch: 1, iter: 86200, loss: 30.484277725219727
epoch: 1, iter: 86300, loss: 30.60747718811035
epoch: 1, iter: 86400, loss: 30.155363082885742
epoch: 1, iter: 86500, loss: 30.28110122680664
epoch: 1, iter: 86600, loss: 30.374900817871094
epoch: 1, iter: 86700, loss: 30.804969787597656
epoch: 1, iter: 86800, loss: 30.20755958557129
epoch: 1, iter: 86900, loss: 30.167919158935547
epoch: 1, iter: 87000, loss: 30.547744750976562
epoch: 1, iter: 87100, loss: 30.687185287475586
epoch: 1, iter: 87200, loss: 30.32683563232422
epoch: 1, iter: 87300, loss: 30.641101837158203
epoch: 1, iter: 87400, loss: 30.987831115722656
epoch: 1, iter: 87500, loss: 30.438377380371094
epoch: 1, iter: 87600, loss: 30.0216007232666
epoch: 1, iter: 87700, loss: 30.663925170898438
epoch: 1, iter: 87800, loss: 30.71135711669922
epoch: 1, iter: 87900, loss: 30.71870994567871
epoch: 1, iter: 88000, loss: 30.205699920654297
epoch: 1, iteration: 88000, simlex-999: SpearmanrResult(correlation=0.16425151824623327, pvalue=3.233772330038919e-07), men: SpearmanrResult(correlation=0.1685696359455271, pvalue=5.707930050658737e-18), sim353: SpearmanrResult(correlation=0.2556407027221877, pvalue=3.87959947193494e-06), nearest to monster: ['monster', 'triangle', 'giant', 'clown', 'bull', 'robot', 'killer', 'pen', 'demon', 'hammer']
epoch: 1, iter: 88100, loss: 30.927677154541016
epoch: 1, iter: 88200, loss: 30.55514144897461
epoch: 1, iter: 88300, loss: 30.23815155029297
epoch: 1, iter: 88400, loss: 30.708179473876953
epoch: 1, iter: 88500, loss: 30.492023468017578
epoch: 1, iter: 88600, loss: 30.046836853027344
epoch: 1, iter: 88700, loss: 29.993240356445312
epoch: 1, iter: 88800, loss: 30.803783416748047
epoch: 1, iter: 88900, loss: 30.327960968017578
epoch: 1, iter: 89000, loss: 29.940567016601562
epoch: 1, iter: 89100, loss: 30.143478393554688
epoch: 1, iter: 89200, loss: 31.123132705688477
epoch: 1, iter: 89300, loss: 30.397336959838867
epoch: 1, iter: 89400, loss: 30.187965393066406
epoch: 1, iter: 89500, loss: 30.048961639404297
epoch: 1, iter: 89600, loss: 30.07036590576172
epoch: 1, iter: 89700, loss: 30.79546356201172
epoch: 1, iter: 89800, loss: 29.865171432495117
epoch: 1, iter: 89900, loss: 30.40514373779297
epoch: 1, iter: 90000, loss: 30.69794464111328
epoch: 1, iteration: 90000, simlex-999: SpearmanrResult(correlation=0.16514616029140247, pvalue=2.784127116501988e-07), men: SpearmanrResult(correlation=0.16954415194873998, pvalue=3.658872001083876e-18), sim353: SpearmanrResult(correlation=0.2555836069543828, pvalue=3.899590976356642e-06), nearest to monster: ['monster', 'triangle', 'giant', 'bull', 'clown', 'robot', 'killer', 'hammer', 'cow', 'demon']
epoch: 1, iter: 90100, loss: 30.630199432373047
epoch: 1, iter: 90200, loss: 30.46442222595215
epoch: 1, iter: 90300, loss: 30.596553802490234
epoch: 1, iter: 90400, loss: 30.49251937866211
epoch: 1, iter: 90500, loss: 30.104934692382812
epoch: 1, iter: 90600, loss: 29.840747833251953
epoch: 1, iter: 90700, loss: 30.267772674560547
epoch: 1, iter: 90800, loss: 30.190765380859375
epoch: 1, iter: 90900, loss: 30.228517532348633
epoch: 1, iter: 91000, loss: 29.798009872436523
epoch: 1, iter: 91100, loss: 30.7586669921875
epoch: 1, iter: 91200, loss: 30.214977264404297
epoch: 1, iter: 91300, loss: 30.565635681152344
epoch: 1, iter: 91400, loss: 30.357879638671875
epoch: 1, iter: 91500, loss: 30.263957977294922
epoch: 1, iter: 91600, loss: 30.030994415283203
epoch: 1, iter: 91700, loss: 30.208396911621094
epoch: 1, iter: 91800, loss: 29.890247344970703
epoch: 1, iter: 91900, loss: 30.48164176940918
epoch: 1, iter: 92000, loss: 30.354490280151367
epoch: 1, iteration: 92000, simlex-999: SpearmanrResult(correlation=0.1653364321742003, pvalue=2.696593345422066e-07), men: SpearmanrResult(correlation=0.1688240673142005, pvalue=5.083536220386492e-18), sim353: SpearmanrResult(correlation=0.259105445573068, pvalue=2.8336170297537425e-06), nearest to monster: ['monster', 'giant', 'triangle', 'clown', 'robot', 'bull', 'cow', 'demon', 'reed', 'rod']
epoch: 1, iter: 92100, loss: 30.68956756591797
epoch: 1, iter: 92200, loss: 30.422218322753906
epoch: 1, iter: 92300, loss: 30.578102111816406
epoch: 1, iter: 92400, loss: 30.647659301757812
epoch: 1, iter: 92500, loss: 30.45465850830078
epoch: 1, iter: 92600, loss: 30.237232208251953
epoch: 1, iter: 92700, loss: 30.611480712890625
epoch: 1, iter: 92800, loss: 30.068378448486328
epoch: 1, iter: 92900, loss: 30.449426651000977
epoch: 1, iter: 93000, loss: 30.518421173095703
epoch: 1, iter: 93100, loss: 30.57355308532715
epoch: 1, iter: 93200, loss: 30.197509765625
epoch: 1, iter: 93300, loss: 30.10198974609375
epoch: 1, iter: 93400, loss: 30.406944274902344
epoch: 1, iter: 93500, loss: 30.485071182250977
epoch: 1, iter: 93600, loss: 30.394821166992188
epoch: 1, iter: 93700, loss: 30.108301162719727
epoch: 1, iter: 93800, loss: 30.055160522460938
epoch: 1, iter: 93900, loss: 30.503068923950195
epoch: 1, iter: 94000, loss: 30.17776870727539
epoch: 1, iteration: 94000, simlex-999: SpearmanrResult(correlation=0.16452175580014577, pvalue=3.091050503921563e-07), men: SpearmanrResult(correlation=0.17031641900147176, pvalue=2.5673219220449705e-18), sim353: SpearmanrResult(correlation=0.25769279178858767, pvalue=3.22261890503053e-06), nearest to monster: ['monster', 'giant', 'triangle', 'clown', 'robot', 'cow', 'bull', 'rod', 'reed', 'killer']
epoch: 1, iter: 94100, loss: 29.95470428466797
epoch: 1, iter: 94200, loss: 30.545040130615234
epoch: 1, iter: 94300, loss: 30.522565841674805
epoch: 1, iter: 94400, loss: 30.301044464111328
epoch: 1, iter: 94500, loss: 30.171085357666016
epoch: 1, iter: 94600, loss: 29.99677276611328
epoch: 1, iter: 94700, loss: 30.42511558532715
epoch: 1, iter: 94800, loss: 29.896169662475586
epoch: 1, iter: 94900, loss: 30.412710189819336
epoch: 1, iter: 95000, loss: 30.261638641357422
epoch: 1, iter: 95100, loss: 30.734485626220703
epoch: 1, iter: 95200, loss: 30.323421478271484
epoch: 1, iter: 95300, loss: 30.30504608154297
epoch: 1, iter: 95400, loss: 30.439306259155273
epoch: 1, iter: 95500, loss: 30.284433364868164
epoch: 1, iter: 95600, loss: 30.344554901123047
epoch: 1, iter: 95700, loss: 31.00472068786621
epoch: 1, iter: 95800, loss: 30.583446502685547
epoch: 1, iter: 95900, loss: 30.249595642089844
epoch: 1, iter: 96000, loss: 30.130508422851562
epoch: 1, iteration: 96000, simlex-999: SpearmanrResult(correlation=0.1658134194270542, pvalue=2.4886654321700024e-07), men: SpearmanrResult(correlation=0.16998066506649745, pvalue=2.9954700943620716e-18), sim353: SpearmanrResult(correlation=0.2615532866770961, pvalue=2.2634047025810973e-06), nearest to monster: ['monster', 'giant', 'triangle', 'clown', 'robot', 'cow', 'storyline', 'demon', 'killer', 'mine']
epoch: 1, iter: 96100, loss: 30.80952262878418
epoch: 1, iter: 96200, loss: 30.514129638671875
epoch: 1, iter: 96300, loss: 30.41751480102539
epoch: 1, iter: 96400, loss: 30.401996612548828
epoch: 1, iter: 96500, loss: 30.39910125732422
epoch: 1, iter: 96600, loss: 29.805984497070312
epoch: 1, iter: 96700, loss: 29.829578399658203
epoch: 1, iter: 96800, loss: 30.401958465576172
epoch: 1, iter: 96900, loss: 30.372657775878906
epoch: 1, iter: 97000, loss: 30.669193267822266
epoch: 1, iter: 97100, loss: 30.45154571533203
epoch: 1, iter: 97200, loss: 30.4871883392334
epoch: 1, iter: 97300, loss: 30.424468994140625
epoch: 1, iter: 97400, loss: 30.36046600341797
epoch: 1, iter: 97500, loss: 30.400753021240234
epoch: 1, iter: 97600, loss: 30.647533416748047
epoch: 1, iter: 97700, loss: 30.4141788482666
epoch: 1, iter: 97800, loss: 30.66451644897461
epoch: 1, iter: 97900, loss: 30.682424545288086
epoch: 1, iter: 98000, loss: 30.974720001220703
epoch: 1, iteration: 98000, simlex-999: SpearmanrResult(correlation=0.1656781876945656, pvalue=2.5459901947414803e-07), men: SpearmanrResult(correlation=0.17076454997186605, pvalue=2.0886359821470924e-18), sim353: SpearmanrResult(correlation=0.2634260651785924, pvalue=1.9030239792892506e-06), nearest to monster: ['monster', 'giant', 'triangle', 'robot', 'clown', 'cow', 'storyline', 'hammer', 'slogan', 'mine']
epoch: 1, iter: 98100, loss: 29.779621124267578
epoch: 1, iter: 98200, loss: 30.314851760864258
epoch: 1, iter: 98300, loss: 30.17748260498047
epoch: 1, iter: 98400, loss: 30.060449600219727
epoch: 1, iter: 98500, loss: 30.29900550842285
epoch: 1, iter: 98600, loss: 30.583925247192383
epoch: 1, iter: 98700, loss: 30.511886596679688
epoch: 1, iter: 98800, loss: 29.978679656982422
epoch: 1, iter: 98900, loss: 30.08024787902832
epoch: 1, iter: 99000, loss: 29.74579620361328
epoch: 1, iter: 99100, loss: 30.44879722595215
epoch: 1, iter: 99200, loss: 30.379261016845703
epoch: 1, iter: 99300, loss: 29.564411163330078
epoch: 1, iter: 99400, loss: 30.413551330566406
epoch: 1, iter: 99500, loss: 29.98810386657715
epoch: 1, iter: 99600, loss: 30.30841827392578
epoch: 1, iter: 99700, loss: 30.51578140258789
epoch: 1, iter: 99800, loss: 30.445234298706055
epoch: 1, iter: 99900, loss: 30.237821578979492
epoch: 1, iter: 100000, loss: 30.199050903320312
epoch: 1, iteration: 100000, simlex-999: SpearmanrResult(correlation=0.16715232584964468, pvalue=1.9843265854812782e-07), men: SpearmanrResult(correlation=0.17124287805386168, pvalue=1.6747013256150605e-18), sim353: SpearmanrResult(correlation=0.26460604437989393, pvalue=1.70487547849196e-06), nearest to monster: ['monster', 'giant', 'triangle', 'robot', 'clown', 'storyline', 'cow', 'slogan', 'hammer', 'melody']
epoch: 1, iter: 100100, loss: 30.333574295043945
epoch: 1, iter: 100200, loss: 30.55845832824707
epoch: 1, iter: 100300, loss: 30.75680160522461
epoch: 1, iter: 100400, loss: 30.388769149780273
epoch: 1, iter: 100500, loss: 30.058666229248047
epoch: 1, iter: 100600, loss: 30.498638153076172
epoch: 1, iter: 100700, loss: 30.53042984008789
epoch: 1, iter: 100800, loss: 30.348159790039062
epoch: 1, iter: 100900, loss: 30.638376235961914
epoch: 1, iter: 101000, loss: 30.172426223754883
epoch: 1, iter: 101100, loss: 30.896692276000977
epoch: 1, iter: 101200, loss: 30.448551177978516
epoch: 1, iter: 101300, loss: 30.56205177307129
epoch: 1, iter: 101400, loss: 30.40060043334961
epoch: 1, iter: 101500, loss: 30.31627655029297
epoch: 1, iter: 101600, loss: 30.167484283447266
epoch: 1, iter: 101700, loss: 30.0115966796875
epoch: 1, iter: 101800, loss: 30.624086380004883
epoch: 1, iter: 101900, loss: 30.172834396362305
epoch: 1, iter: 102000, loss: 30.562152862548828
epoch: 1, iteration: 102000, simlex-999: SpearmanrResult(correlation=0.1670230978748453, pvalue=2.028337490988046e-07), men: SpearmanrResult(correlation=0.1713810110701936, pvalue=1.5710283985855815e-18), sim353: SpearmanrResult(correlation=0.26441292634173025, pvalue=1.7358951566969633e-06), nearest to monster: ['monster', 'giant', 'triangle', 'robot', 'clown', 'storyline', 'cow', 'slogan', 'hammer', 'finger']
epoch: 1, iter: 102100, loss: 30.55624008178711
epoch: 1, iter: 102200, loss: 30.41084098815918
epoch: 1, iter: 102300, loss: 30.26647186279297
epoch: 1, iter: 102400, loss: 30.464323043823242
epoch: 1, iter: 102500, loss: 30.623504638671875
epoch: 1, iter: 102600, loss: 31.13153839111328
epoch: 1, iter: 102700, loss: 30.719829559326172
epoch: 1, iter: 102800, loss: 30.62751007080078
epoch: 1, iter: 102900, loss: 30.385581970214844
epoch: 1, iter: 103000, loss: 31.12250328063965
epoch: 1, iter: 103100, loss: 30.452640533447266
epoch: 1, iter: 103200, loss: 30.76857566833496
epoch: 1, iter: 103300, loss: 30.577342987060547
epoch: 1, iter: 103400, loss: 30.7468318939209
epoch: 1, iter: 103500, loss: 30.40059471130371
epoch: 1, iter: 103600, loss: 30.383655548095703
epoch: 1, iter: 103700, loss: 30.386371612548828
epoch: 1, iter: 103800, loss: 30.170000076293945
epoch: 1, iter: 103900, loss: 30.548282623291016
epoch: 1, iter: 104000, loss: 29.733184814453125
epoch: 1, iteration: 104000, simlex-999: SpearmanrResult(correlation=0.16893464777171635, pvalue=1.4637531128005816e-07), men: SpearmanrResult(correlation=0.17193637752975074, pvalue=1.2144154074333336e-18), sim353: SpearmanrResult(correlation=0.2644817771205538, pvalue=1.72477455415369e-06), nearest to monster: ['monster', 'giant', 'robot', 'triangle', 'clown', 'storyline', 'hammer', 'bull', 'slogan', 'cow']
epoch: 1, iter: 104100, loss: 30.98358917236328
epoch: 1, iter: 104200, loss: 30.25103759765625
epoch: 1, iter: 104300, loss: 30.568321228027344
epoch: 1, iter: 104400, loss: 30.607681274414062
epoch: 1, iter: 104500, loss: 31.158170700073242
epoch: 1, iter: 104600, loss: 30.96269416809082
epoch: 1, iter: 104700, loss: 30.154834747314453
epoch: 1, iter: 104800, loss: 30.38031768798828
epoch: 1, iter: 104900, loss: 30.168392181396484
epoch: 1, iter: 105000, loss: 30.190406799316406
epoch: 1, iter: 105100, loss: 30.59976577758789
epoch: 1, iter: 105200, loss: 30.05843734741211
epoch: 1, iter: 105300, loss: 30.54991340637207
epoch: 1, iter: 105400, loss: 30.098140716552734
epoch: 1, iter: 105500, loss: 30.414899826049805
epoch: 1, iter: 105600, loss: 30.54265594482422
epoch: 1, iter: 105700, loss: 30.9292049407959
epoch: 1, iter: 105800, loss: 30.35509490966797
epoch: 1, iter: 105900, loss: 30.05394172668457
epoch: 1, iter: 106000, loss: 30.226543426513672
epoch: 1, iteration: 106000, simlex-999: SpearmanrResult(correlation=0.1684798203405728, pvalue=1.5824218505055718e-07), men: SpearmanrResult(correlation=0.1734020098336969, pvalue=6.130244612215065e-19), sim353: SpearmanrResult(correlation=0.2653148902030666, pvalue=1.595499439172943e-06), nearest to monster: ['monster', 'giant', 'robot', 'clown', 'triangle', 'hammer', 'bull', 'storyline', 'slogan', 'cow']
epoch: 1, iter: 106100, loss: 30.15334701538086
epoch: 1, iter: 106200, loss: 30.41736602783203
epoch: 1, iter: 106300, loss: 30.16756820678711
epoch: 1, iter: 106400, loss: 30.476585388183594
epoch: 1, iter: 106500, loss: 31.16946792602539
epoch: 1, iter: 106600, loss: 30.209535598754883
epoch: 1, iter: 106700, loss: 30.48019790649414
epoch: 1, iter: 106800, loss: 29.56353187561035
epoch: 1, iter: 106900, loss: 30.35293960571289
epoch: 1, iter: 107000, loss: 30.54877471923828
epoch: 1, iter: 107100, loss: 29.95642852783203
epoch: 1, iter: 107200, loss: 29.863868713378906
epoch: 1, iter: 107300, loss: 30.54117202758789
epoch: 1, iter: 107400, loss: 30.564319610595703
epoch: 1, iter: 107500, loss: 30.289745330810547
epoch: 1, iter: 107600, loss: 30.34166717529297
epoch: 1, iter: 107700, loss: 30.228656768798828
epoch: 1, iter: 107800, loss: 30.19826889038086
epoch: 1, iter: 107900, loss: 29.98631477355957
epoch: 1, iter: 108000, loss: 30.534252166748047
epoch: 1, iteration: 108000, simlex-999: SpearmanrResult(correlation=0.16809445029314032, pvalue=1.6901904840218488e-07), men: SpearmanrResult(correlation=0.17424501907579965, pvalue=4.1259778445697578e-19), sim353: SpearmanrResult(correlation=0.2659931356800956, pvalue=1.4971527422559394e-06), nearest to monster: ['monster', 'giant', 'robot', 'hammer', 'triangle', 'bull', 'clown', 'rod', 'storyline', 'slogan']
epoch: 1, iter: 108100, loss: 30.33737564086914
epoch: 1, iter: 108200, loss: 30.28573226928711
epoch: 1, iter: 108300, loss: 30.758136749267578
epoch: 1, iter: 108400, loss: 30.248483657836914
epoch: 1, iter: 108500, loss: 29.876144409179688
epoch: 1, iter: 108600, loss: 30.282499313354492
epoch: 1, iter: 108700, loss: 30.403133392333984
epoch: 1, iter: 108800, loss: 30.222488403320312
epoch: 1, iter: 108900, loss: 30.056053161621094
epoch: 1, iter: 109000, loss: 30.39307403564453
epoch: 1, iter: 109100, loss: 30.315738677978516
epoch: 1, iter: 109200, loss: 30.37272071838379
epoch: 1, iter: 109300, loss: 30.462688446044922
epoch: 1, iter: 109400, loss: 30.42410659790039
epoch: 1, iter: 109500, loss: 30.414215087890625
epoch: 1, iter: 109600, loss: 30.320392608642578
epoch: 1, iter: 109700, loss: 30.297039031982422
epoch: 1, iter: 109800, loss: 30.644512176513672
epoch: 1, iter: 109900, loss: 30.753337860107422
epoch: 1, iter: 110000, loss: 30.265583038330078
epoch: 1, iteration: 110000, simlex-999: SpearmanrResult(correlation=0.16907060515792793, pvalue=1.4299814068693673e-07), men: SpearmanrResult(correlation=0.17510555147417187, pvalue=2.7485794885676823e-19), sim353: SpearmanrResult(correlation=0.267975254442813, pvalue=1.241886586688811e-06), nearest to monster: ['monster', 'giant', 'robot', 'bull', 'hammer', 'clown', 'rod', 'triangle', 'killer', 'reads']
epoch: 1, iter: 110100, loss: 30.272464752197266
epoch: 1, iter: 110200, loss: 30.38793182373047
epoch: 1, iter: 110300, loss: 30.590267181396484
epoch: 1, iter: 110400, loss: 30.97867202758789
epoch: 1, iter: 110500, loss: 30.195693969726562
epoch: 1, iter: 110600, loss: 30.050588607788086
epoch: 1, iter: 110700, loss: 30.010971069335938
epoch: 1, iter: 110800, loss: 30.200347900390625
epoch: 1, iter: 110900, loss: 30.716394424438477
epoch: 1, iter: 111000, loss: 30.02122688293457
epoch: 1, iter: 111100, loss: 30.24693489074707
epoch: 1, iter: 111200, loss: 30.085987091064453
epoch: 1, iter: 111300, loss: 30.499698638916016
epoch: 1, iter: 111400, loss: 30.532825469970703
epoch: 1, iter: 111500, loss: 29.860715866088867
epoch: 1, iter: 111600, loss: 30.18459701538086
epoch: 1, iter: 111700, loss: 30.063079833984375
epoch: 1, iter: 111800, loss: 30.4438533782959
epoch: 1, iter: 111900, loss: 29.979290008544922
epoch: 1, iter: 112000, loss: 29.959312438964844
epoch: 1, iteration: 112000, simlex-999: SpearmanrResult(correlation=0.17045668307885228, pvalue=1.1259417092002108e-07), men: SpearmanrResult(correlation=0.17566254497426181, pvalue=2.110750452163048e-19), sim353: SpearmanrResult(correlation=0.2669130119391746, pvalue=1.3729997266364257e-06), nearest to monster: ['monster', 'giant', 'bull', 'robot', 'clown', 'hammer', 'triangle', 'killer', 'reads', 'slogan']
epoch: 1, iter: 112100, loss: 30.033226013183594
epoch: 1, iter: 112200, loss: 29.982528686523438
epoch: 1, iter: 112300, loss: 30.576221466064453
epoch: 1, iter: 112400, loss: 30.227249145507812
epoch: 1, iter: 112500, loss: 30.463727951049805
epoch: 1, iter: 112600, loss: 30.63485336303711
epoch: 1, iter: 112700, loss: 30.5284423828125
epoch: 1, iter: 112800, loss: 30.665870666503906
epoch: 1, iter: 112900, loss: 29.814481735229492
epoch: 1, iter: 113000, loss: 30.23995590209961
epoch: 1, iter: 113100, loss: 30.29913330078125
epoch: 1, iter: 113200, loss: 30.609512329101562
epoch: 1, iter: 113300, loss: 30.66790771484375
epoch: 1, iter: 113400, loss: 30.355817794799805
epoch: 1, iter: 113500, loss: 30.777101516723633
epoch: 1, iter: 113600, loss: 29.784292221069336
epoch: 1, iter: 113700, loss: 30.44632339477539
epoch: 1, iter: 113800, loss: 30.35899543762207
epoch: 1, iter: 113900, loss: 30.091773986816406
epoch: 1, iter: 114000, loss: 30.235483169555664
epoch: 1, iteration: 114000, simlex-999: SpearmanrResult(correlation=0.17074223750408546, pvalue=1.0715770710689782e-07), men: SpearmanrResult(correlation=0.176259639644225, pvalue=1.5888720988857355e-19), sim353: SpearmanrResult(correlation=0.2676783937677228, pvalue=1.2772687113870497e-06), nearest to monster: ['monster', 'giant', 'bull', 'robot', 'clown', 'hammer', 'killer', 'triangle', 'slogan', 'storyline']
epoch: 1, iter: 114100, loss: 31.208988189697266
epoch: 1, iter: 114200, loss: 30.55046844482422
epoch: 1, iter: 114300, loss: 29.999637603759766
epoch: 1, iter: 114400, loss: 29.898786544799805
epoch: 1, iter: 114500, loss: 30.682052612304688
epoch: 1, iter: 114600, loss: 30.83867835998535
epoch: 1, iter: 114700, loss: 30.36109733581543
epoch: 1, iter: 114800, loss: 30.97061538696289
epoch: 1, iter: 114900, loss: 30.502185821533203
epoch: 1, iter: 115000, loss: 30.31426239013672
epoch: 1, iter: 115100, loss: 30.291278839111328
epoch: 1, iter: 115200, loss: 29.921966552734375
epoch: 1, iter: 115300, loss: 30.482467651367188
epoch: 1, iter: 115400, loss: 30.56399917602539
epoch: 1, iter: 115500, loss: 30.21322250366211
epoch: 1, iter: 115600, loss: 30.300979614257812
epoch: 1, iter: 115700, loss: 30.243253707885742
epoch: 1, iter: 115800, loss: 30.047298431396484
epoch: 1, iter: 115900, loss: 30.42316436767578
epoch: 1, iter: 116000, loss: 30.36935043334961
epoch: 1, iteration: 116000, simlex-999: SpearmanrResult(correlation=0.17049890390424202, pvalue=1.1177389455317111e-07), men: SpearmanrResult(correlation=0.1761607002941838, pvalue=1.6655510704355566e-19), sim353: SpearmanrResult(correlation=0.26764518119690817, pvalue=1.2812867355896495e-06), nearest to monster: ['monster', 'giant', 'bull', 'clown', 'robot', 'hammer', 'killer', 'triangle', 'vampire', 'demon']
epoch: 1, iter: 116100, loss: 29.956588745117188
epoch: 1, iter: 116200, loss: 30.239765167236328
epoch: 1, iter: 116300, loss: 30.056724548339844
epoch: 1, iter: 116400, loss: 30.337177276611328
epoch: 1, iter: 116500, loss: 30.554336547851562
epoch: 1, iter: 116600, loss: 30.801679611206055
epoch: 1, iter: 116700, loss: 30.705276489257812
epoch: 1, iter: 116800, loss: 30.503780364990234
epoch: 1, iter: 116900, loss: 29.62342643737793
epoch: 1, iter: 117000, loss: 30.29004669189453
epoch: 1, iter: 117100, loss: 30.506996154785156
epoch: 1, iter: 117200, loss: 30.6331787109375
epoch: 1, iter: 117300, loss: 30.65314483642578
epoch: 1, iter: 117400, loss: 30.795137405395508
epoch: 1, iter: 117500, loss: 30.28030776977539
epoch: 1, iter: 117600, loss: 30.351322174072266
epoch: 1, iter: 117700, loss: 30.542030334472656
epoch: 1, iter: 117800, loss: 30.361120223999023
epoch: 1, iter: 117900, loss: 30.456024169921875
epoch: 1, iter: 118000, loss: 30.537174224853516
epoch: 1, iteration: 118000, simlex-999: SpearmanrResult(correlation=0.17280547641221922, pvalue=7.475906386705914e-08), men: SpearmanrResult(correlation=0.17732985405232565, pvalue=9.526064095701539e-20), sim353: SpearmanrResult(correlation=0.2698694905041053, pvalue=1.037261623872224e-06), nearest to monster: ['monster', 'giant', 'robot', 'clown', 'hammer', 'bull', 'killer', 'vampire', 'triangle', 'demon']
epoch: 1, iter: 118100, loss: 29.840484619140625
epoch: 1, iter: 118200, loss: 30.325119018554688
epoch: 1, iter: 118300, loss: 30.51473045349121
epoch: 1, iter: 118400, loss: 30.261699676513672
epoch: 1, iter: 118500, loss: 30.180068969726562
epoch: 1, iter: 118600, loss: 30.017879486083984
epoch: 1, iter: 118700, loss: 30.56424903869629
epoch: 1, iter: 118800, loss: 30.457590103149414
epoch: 1, iter: 118900, loss: 30.63213539123535
epoch: 1, iter: 119000, loss: 30.692546844482422
epoch: 1, iter: 119100, loss: 30.539554595947266
epoch: 1, iter: 119200, loss: 30.656726837158203
epoch: 1, iter: 119300, loss: 30.380685806274414
epoch: 1, iter: 119400, loss: 29.897314071655273
epoch: 1, iter: 119500, loss: 29.90090560913086
1 model.load_state_dict(torch.load("embedding-{}.th" .format(EMBEDDING_SIZE)))
在 MEN 和 Simplex-999 数据集上做评估 1 2 3 4 embedding_weights = model.input_embeddings() print("simlex-999" , evaluate("simlex-999.txt" , embedding_weights)) print("men" , evaluate("men.txt" , embedding_weights)) print("wordsim353" , evaluate("wordsim353.csv" , embedding_weights))
simlex-999 SpearmanrResult(correlation=0.17251697429101504, pvalue=7.863946056740345e-08)
men SpearmanrResult(correlation=0.1778096817088841, pvalue=7.565661657312768e-20)
wordsim353 SpearmanrResult(correlation=0.27153702278146635, pvalue=8.842165885381714e-07)
寻找nearest neighbors 1 2 for word in ["good" , "fresh" , "monster" , "green" , "like" , "america" , "chicago" , "work" , "computer" , "language" ]: print(word, find_nearest(word))
good ['good', 'bad', 'perfect', 'hard', 'questions', 'alone', 'money', 'false', 'truth', 'experience']
fresh ['fresh', 'grain', 'waste', 'cooling', 'lighter', 'dense', 'mild', 'sized', 'warm', 'steel']
monster ['monster', 'giant', 'robot', 'hammer', 'clown', 'bull', 'demon', 'triangle', 'storyline', 'slogan']
green ['green', 'blue', 'yellow', 'white', 'cross', 'orange', 'black', 'red', 'mountain', 'gold']
like ['like', 'unlike', 'etc', 'whereas', 'animals', 'soft', 'amongst', 'similarly', 'bear', 'drink']
america ['america', 'africa', 'korea', 'india', 'australia', 'turkey', 'pakistan', 'mexico', 'argentina', 'carolina']
chicago ['chicago', 'boston', 'illinois', 'texas', 'london', 'indiana', 'massachusetts', 'florida', 'berkeley', 'michigan']
work ['work', 'writing', 'job', 'marx', 'solo', 'label', 'recording', 'nietzsche', 'appearance', 'stage']
computer ['computer', 'digital', 'electronic', 'audio', 'video', 'graphics', 'hardware', 'software', 'computers', 'program']
language ['language', 'languages', 'alphabet', 'arabic', 'grammar', 'pronunciation', 'dialect', 'programming', 'chinese', 'spelling']
单词之间的关系 1 2 3 4 5 6 7 man_idx = word_to_idx["man" ] king_idx = word_to_idx["king" ] woman_idx = word_to_idx["woman" ] embedding = embedding_weights[woman_idx] - embedding_weights[man_idx] + embedding_weights[king_idx] cos_dis = np.array([scipy.spatial.distance.cosine(e, embedding) for e in embedding_weights]) for i in cos_dis.argsort()[:20 ]: print(idx_to_word[i])
king
henry
charles
pope
queen
iii
prince
elizabeth
alexander
constantine
edward
son
iv
louis
emperor
mary
james
joseph
frederick
francis